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Abstract 

Motion discomfort in highly automated vehicles and in simulators represents a persistent 

problem that might be mitigated if it can be monitored. In driving simulators, motion discomfort 

can compromise data collection. In highly automated vehicles, motion discomfort can 

discourage people from riding in such vehicles, undermining the potential safety benefits. 

Monitoring motion sickness in real-time can help mitigate its negative consequences. This report 

investigates the potential of machine vision techniques in estimating motion discomfort in real-

time for both, simulators and highly automated vehicles. Drivers’ video data and simulator 

sickness scores collected in the NADS driving simulator were analyzed. The video data were 

reduced to the facial action units (basic units of facial expressions) and head pose estimations. 

While results did not show significant correlations between motion score and facial expressions, 

we found a significant correlation between the drivers’ head position and motion sickness 

severity. One important outcome of this project was a computer-aiding tool for manual coding of 

videos. The tool can be used to advance research on the topic of motion sickness and also in 

other fields and areas that rely on video analytics like affective computing.  
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11 A Machine Vision Approach for Estimating Motion Discomfort in Simulators 

1 Introduction 

Motion discomfort in highly automated vehicles and in simulators represents a 

persistent problem that might be mitigated if it can be monitored. In driving simulators, 

motion discomfort can compromise data collection. In highly automated vehicles, motion 

discomfort can discourage people from riding in such vehicles, undermining the potential 

safety benefits. 

Driving simulators sometimes induce discomfort that ranges from a sense of visual 

strain and fullness of head to severe nausea and projectile vomiting. Obviously, the 

more extreme levels of simulator discomfort can compromise the research and training 

goals of driving simulators.  Even mild forms of discomfort can shift the driver’s behavior 

in a way that can undermine the validity of the research.  For example, participants who 

begin to feel discomfort may compromise their attention to the driving task.   

Because riders in highly automated vehicles are likely to look away from the road to 

perform other tasks (e.g., respond to email or watch videos) or to socialize with other 

passengers, highly automated vehicles are likely to induce motion discomfort similar to 

that seen in simulators [1]. This might discourage people from riding in such vehicles. 

Motion discomfort in both simulators and highly automated vehicles can undermine 

their potential, so real-time monitoring and mitigating discomfort is an important concern.  

In driving simulators, real-time monitoring for motion discomfort would allow researchers 

to intervene and stop the experiment before a participant becomes seriously ill. The 

output of the real-time monitoring could also be combined with other simulator variables 

to identify data that might be compromised by participants trying to mitigate their feelings 

of discomfort (e.g., unusual steering behavior because they are driving through curves 

with their eyes shut).The output of the real-time monitoring of riders in highly automated 

vehicles could be used to adjust braking and steering algorithms or guide other motion-
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sickness mitigation (e.g., increase the field of view, stabilize the in-vehicle task [1], or 

adjust the air conditioning [2]. 

Real-time estimates of motion discomfort are clearly valuable, but no system has 

been developed to produce them. Experimenters currently rely on careful observations, 

queries to drivers concerning how they are feeling, and post-drive ratings. Therefore, this 

report investigates the potential of machine vision to generate a real-time estimate of 

motion discomfort.  

1.1 Objectives 

The objective of this project is to investigate the possibility of machine vision 

techniques to estimate motion discomfort in real-time for both, simulators and highly 

automated vehicles. The objective was achieved by the following steps: 

1. Developing a tool that helps in exploring the videos. This tool is very valuable for 

video analytics in general; it provides a collaborative platform between machine 

learning algorithms and scientists.  

2. Analyzing drivers’ facial expressions to determine their potential for real-time 

estimation of motion discomfort in simulators and highly automated vehicles to 

replace other, more intrusive measures of discomfort. 

3. Examining head posture data, obtained from an in-vehicle camera, and its effect 

on motion sickness.  

1.2 Summary of results 

In this project, we were able to develop a web application using R software and the 

shiny package [3], [4]. The application represents a powerful and promising tool for video 

analytics. It allows the scientist to label selected frames from videos by leveraging 

unsupervised machine learning algorithms that clusters frames based on the similarities 

in the facial expressions. Then, the scientists can manually provide a label for similar 

frames. 
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In addition, the results suggested a significant positive relationship between the 

driver’s proximity (z-distance) to the camera and motion sickness score. A significant 

negative relationship between the driver’s horizontal distance from the camera (x-axis) 

and motion sickness score. Figure 1 illustrates these dimensions.  

 

 

Figure 1. The three axes as measured from the mounted camera 

 

Finally, there were some challenges in predicting motion sickness from facial 

expressions. Firstly, the lack of a continuous validating measure of motion sickness 

made it difficult to evaluate changes in facial expressions on a second-to-second basis. 

Instead, we relied on overall changes of the driver’s facial action units throughout the 

start and the end of the drive. Secondly, most of the drivers who expressed feeling 

uncomfortable did so after a sickness-inducing maneuver and consequently, withdrew 

from the experiment. In other words, there was not much data from drivers while sick. 

Nevertheless, based on the results of this project, we made recommendations that will 

hopefully guide future research efforts. 
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1.3 Report structure 

In addition to Section 1, which provided an overview of the project, this report 

consists of other sections as follows. Section 2 reviews the relevant literature on motion 

sickness in simulators and vehicles and highlights why we think machine vision 

monitoring will be valuable. Section 3 describes the data used in the analysis. Section 4 

provides the analysis and results of the research and section 5 concludes with 

suggestions for future work and research. 
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2 Literature Review 

2.1 Motion sickness 

Motion sickness is defined as “a syndrome characterized in humans by signs such 

as vomiting, pallor, cold sweating, yawning, belching, flatulence, decreased gastric tonus 

and by symptoms such as discomfort, nausea, headache, feeling of warmth and 

drowsiness” [5]. There are two main theories that explain motion sickness: the sensory 

conflict theory [6] and the postural instability theory [7]. The first explains motion 

sickness as a result of a mismatch between the three movement sensing systems 

(nerves, eyes, and inner ear) [8]. The other theory explains motion sickness as a result 

of loss of the coordination and stability of body segments. A study by Warwick-Evans et 

al. [9] evaluated both theories, and their results validated the sensory conflict theory but 

did not validate the postural instability theory. Hence, the sensory conflict theory was 

adopted by scientists in explaining motion sickness. This theory explains why drivers are 

less likely to get sick in comparison to passengers and why reading in a moving vehicle 

can induce motion sickness; the eyes do not sense the movement that the inner ear 

senses.  

Motion sickness is not limited to cars. It can be seen in the sea (seasickness), in the 

air (airsickness), in space (space sickness), or even in virtual spaces (simulator 

sickness). In this report, the collected sickness data was from a driving simulator study, 

and therefore, we will be referring to simulator sickness rather than the other categories 

of sickness. Nevertheless, what can be learned from simulators has the potential to be 

transferred to other domains such as automated vehicles.  

Simulator sickness (which will be investigated further in this report) is very similar to 

motion sickness in symptoms but occurs in simulators and virtual reality even when the 

person is not moving. Symptoms can include vomiting, headaches, sweating, increased 

salivation, drowsiness, dizziness, and/or warmth. Sickness symptoms can undermine 
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the effectiveness of simulator experiments and might even have safety consequences 

for the participants (e.g., if participants had to drive right after a simulator experiment 

while having one or more of the above symptoms). Therefore, investigating factors 

affecting motion sickness can help control it. 

2.2 Current measures of motion sickness 

Previous research on motion sickness reported different measures to quantify the 

severity of sickness. Such measures mainly rely on physiological changes in the human 

body and on subjective reports from participants. 

2.2.1 Physiological changes 

Motion sickness has been found to be associated with many physiological changes 

in the body. Table 1, taken from [10] summarizes these physiological changes. 

Physiological measures have been used widely to validate other driver state measures, 

such as mind wandering, through electroencephalogram (EEG) [11]. Similarly, 

physiological changes have been used to measure motion sickness. However, Shupak 

and Gordon [12] reported that there is no single measure that has sufficient sensitivity 

and specificity to accurately estimate or predict motion sickness in real-time. Another 

study by [13] confirmed the previous results of Shupak and Gordon; they tried to detect 

motion sickness through a wearable device that monitors EEG, heart rate, and blood 

pressure and were not able to confirm a definitive correlation between those 

physiological measures and motion sickness that would allow continuous monitoring of 

sickness in real-time. 
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Table 1. Physiological changes associated with motion sickness 
Physiological 
System 

Manifestations 

Cardiovascular 

Changes in pulse rate and/or blood pressure 
↑ tone of arterial portion of capillaries in the fingernail bed 
↓ diameter of retinal vessels 
↓ peripheral circulation, especially in the skin of the head 
↑ muscle blood flow 

Respiratory 
Alterations in respiration rate 
Sighing or yawning 
Air swallowing 

Gastrointestinal 

Inhibition of gastric intestinal tone and secretions. 
Salvation 
Gas or belching 
Epigastric discomfort or awareness 
Sudden relief from symptoms after vomiting 

Body Fluids Changes in Lactic Dehydrogenase concentrations 

Blood 

↑ hemoglobin concentration 
↑ pH and ↓ paCO2 levels in arterial blood, presumably from hyperventilation 
↓ concentration of eosinophils 
↑ 17-hydroxycorticosteroids 
↑ plasma proteins 
↑ ADH 
↓ Glucose utilization 

Urine ↑ 17-hydroxycorticosteroids 
↑ catecholamines 

Temperature ↓ body temperature 
Coldness of extremities 

Visual System 

Ocular imbalance 
Dilated pupils during emesis 
Small pupils 
Nystagmus 

Adapted from Kennedy and Frank [10] 
 

Hence, physiological changes are correlated to motion sickness and can be used as an 

additional layer of validation. However, on their own, they cannot estimate and monitor 

motion sickness. See Koohestani et al. [14], for a comprehensive review of physiological 

measures and motion sickness. 

2.2.2 Subjective measures 

Subjective measures are the most common measure of motion sickness. They are 

the person’s own assessment of their symptoms. Usually, surveys are administered to 

assess the severity of motion sickness symptoms and consequently quantify the level of 
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sickness. A typical motion sickness questionnaire consists of many questions, making it 

impractical to get a measure of sickness in a continuous fashion. 

 One of the most common motion sickness questionnaires is the Pensacola Motion 

Sickness Questionnaire (MSQ) [15]. Their questionnaire assigned varying weights to 

different symptoms of motion sickness and the total severity score as a summation of 

the weights of all present symptoms. There are many variations of this scale with 

different numbers of items, and the most comprehensive one has 33 items [1]. 

Another widely used questionnaire is the Simulator Sickness Questionnaire (SSQ), 

and as the name suggests, this is used in simulators and virtual reality settings. SSQ 

was developed by Kennedy et al. [16] and it consists of 16 items. Factor analysis 

showed that these symptoms can be split into three categories: symptoms related to 

Oculomotor, symptoms related to Disorientation, and symptoms related to Nausea. 

Weights are assigned to the three different categories, and their summation provides a 

single sickness severity score. Participants are usually asked to rate the symptoms on a 

4-point scale (0-3) [17]. Table 2 below shows the symptoms in the SSQ scale and their 

corresponding weights in each category. Those with a factor loading greater than 0.30 

are bold. In this project, we use the SSQ score as the ground truth for sickness severity. 

 



 

 

19 A Machine Vision Approach for Estimating Motion Discomfort in Simulators 

Table 2. SSQ symptom list and the corresponding factor loading for each category 

Symptom Category 
Nausea Oculomotor Disorientation 

Nausea 0.75 0.08 0.30 
General discomfort 0.65 0.40 0.18 
Stomach awareness 0.64 0.03 0.21 
Sweating 0.31 0.24 0.08 
Increased salivation 0.53 0.21 0.13 
Vertigo 0.18 0.08 0.37 
Burping 0.41 0.04 0.22 
Difficulty concentrating 0.32 0.39 0.27 
Difficulty focusing -0.01 0.61 0.43 
Eyestrain 0.00 0.74 0.17 
Fatigue 0.15 0.54 -0.04 
Headache 0.22 0.53 0.15 
Blurred vision 0.01 0.36 0.40 
Dizzy (eyes closed) 0.17 0.07 0.76 
Dizzy (eyes open) 0.17 0.09 0.65 
Fulness of head 0.12 0.17 0.37 

 Adapted from Balk et al. [17] 
 

There have been efforts to measure motion sickness in a continuous manner. Young et 

al. [18] developed an efficient method that was used in the domain of centrifuge 

experiments. Their method involves participants verbally rating their motion sickness 

severity on a 20-point scale (i.e., 0 (no sickness at all) to 20 (frank sickness)) every 

minute. Eight years later, they validated their method in a driving simulator to 

demonstrate that it can be used in more domains [19]. 

2.3 Other potential measures of motion sickness 

Both physiological and subjective measures have drawbacks, and neither can 

measure sickness continuously in real-time. Subjective reports are usually obtained over 

long periods of time and can be intrusive if measured more often. Furthermore, 

physiological measures are challenging because (i) they require high technical expertise 

to set up and obtain accurate data [20]  and (ii) research on physiological measures was 

not able to validate their predictivity of sickness [12]. Hence, there is still a need for 

measures that allow for real-time monitoring to mitigate the consequences of motion 



 

 

20 A Machine Vision Approach for Estimating Motion Discomfort in Simulators 

sickness early on. By exploring other domains, we found that machine vision techniques 

can provide such a measure.  

In affective computing, researchers rely on machine vision to track the user’s facial 

expressions and gain insight to their emotions and have the system/computer react 

accordingly. This is typically done automatically and in real-time by relying on facial 

action units. Facial action units system is a taxonomy for the facial muscle movement. 

Ekman et al. [21], reported that combinations of the action units represent emotions. For 

example, activation of action unit 6 (cheek raise) and action unit 12 (lip corner puller) 

represent smiling, and hence, the person is said to be happy. Figure 2 illustrates the 

different action units and the corresponding emotions [22]. In addition, researchers have 

employed other cues such as body language and head pose [23]. Similar systems for 

motion sickness monitoring in simulators and highly automated vehicles would be 

extremely valuable. First, in simulators, the output of the monitoring system can be used 

by researchers to mitigate further consequences of sickness and to consider the 

participant’ conditions in the data analysis process. Second, in highly automated 

vehicles, the car can adjust braking and steering algorithms, stabilize the in-vehicle task, 

or adjust the air conditioning [1], [2], [24]. Also, in the biological sciences domain, 

researchers have investigated sickness detection through image recognition. One study 

on rats found that there are facial expression changes (specifically eye-opening 

decrease) after injecting rats with nausea-inducing medication associated with nausea-

like symptoms [25].  
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Figure 2. An illustration of the Facial Action Coding System. Taken from [22]. 

 

2.4 Countermeasures of motion sickness 

If we can detect motion sickness, we can mitigate its further progress. Research has 

found many useful techniques to reduce the symptoms of motions sickness. Examples 

of such techniques include increasing the field of view, stabilizing the in-vehicle task [1], 

adjusting the air conditioning [2], alternative virtual realities that mirror the real world, or 

displaying the intentions of the vehicle [26] as it is assumed that unpredicted motion 

contributes to sickness [27].  Another technique is the motion sickness goggles 

developed by Citroën. Their glasses have a blue fluid surrounding the eye that is meant 

to stabilize the view of the driver, as shown in Figure 3. Yet, the question remains of how 

to employ such techniques in simulators and automated vehicles.   
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Figure 3. Citroën motion sickness glasses 

 

2.5 Literature review summary 

Motion sickness is a very common phenomenon that occurs in simulators and 

conventional vehicles and is likely to occur in automated vehicles. Motion sickness 

undermines research validity and will potentially undermine the benefits of vehicle 

automation. Monitoring motion sickness in real-time will allow for mitigating its negative 

consequences, yet, no such technologies have been developed. Previous measures of 

motion sickness relied on subjective reports and physiological changes. Physiological 

changes vary significantly across individuals, and there is no one single measure that 

can be used. Whereas subjective reports are usually collected over long periods of time. 

Hence, there is a need for a continuous real-time measure. This project investigated the 

potential of facial expressions and head positioning as a continuous estimation of motion 

sickness in simulators. 
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3 Method 

3.1 Participants and data 

Data was collected from 64 participants. Of the 64 participants, only 48 completed 

the three drives (one practice and two experiment drives)  as required by the original 

experiment design [28]. The other 18 withdrew from the experiment at some point 

because of motion sickness. In this analysis, we included all 64 participants’ data. At the 

end of each drive, participants completed the Simulator Sickness Questionnaire (SSQ) 

[16]. The collected data included 179 monochrome videos; one video for each drive. The 

videos were sampled at 30 Hz. The video data and the SSQ data were synched by the 

participant number. For the video data, we used an open-source software tool, 

OpenFace [29] to reduce the data. From the output of OpenFace, we included the 

following variables: 

1. Confidence in face detection 

2. Facial action units estimation (AU01, AU02, AU04, AU05, AU06, AU07, AU09, 

AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU45) 

3. Head position relative to the camera on 3D axes (x, y, and z) [30] 

4. Head rotation from the camera (yaw, pitch, and roll) 

3.2 Scenario and simulator 

The data was collected in 2011 at the National Advanced Driving Simulator at the 

University of Iowa, shown in Figure 4. Some participants drove with motion in the 

simulator, while others drove without motion. The scenario included straight and curved 

road segments. More importantly, the drive included traffic circles as well. The 

combination of traffic circles and curved road segments are well-known to induce motion 

sickness in simulators [8]. 
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Figure 4. The National Advanced Driving Simulator (NADS) at the University of 

Iowa 
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4 Data Analysis and Results 

The sections below discuss the analysis and results of the video data and the SSQ 

data collected from the driving simulator experiment. The video data was reduced using 

the open-source software tool OpenFace [29]. All the data manipulation and statistical 

analysis were done in R [31].  

4.1 Video reduction 

We had a total of 179 videos, that included practice and experiment drives. They 

yielded a total of 4,028,267 frames sampled at 30 Hz. First, we processed the drivers’ 

video in OpenFace [29]. OpenFace is an open-source toolkit for facial landmark and 

action unit detection as well as head pose and eye-gaze estimation. We used OpenFace 

to extract the drivers’ facial action units, head position, and head rotation estimations 

from the videos. Table 3 shows the facial action units that OpenFace estimates and their 

definitions [21]. In addition, as part of the output from OpenFace, the confidence of the 

face detection is provided. For this analysis, and after careful exploration of the videos, 

we filtered out the frames with face detection confidence less than 75%. Frames with 

confidence less than 75% were very blurry, only part of the face detected, or no face 

detected at all. This resulted in a reduction of the total number of videos to 173 (i.e., 

there were six videos that had no frames above 75% confidence) and the total number 

of frames to 3,162,788. Figure 5 shows a histogram of the confidence across frames. 
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Table 3. A list of the facial action units estimated by OpenFace and their 

definitions 

Action Unit Definition Muscle 

AU 01 Inner Brow Raiser Frontalis, Pars Medialis 

AU 02 Outer Brow Raiser Frontalis, Pars Lateralis 

AU 04 Brow Lowerer Depressor Glabellae, Depressor Supercilli, Currugator 

AU 05 Upper Lid Raiser Levator Palpebrae Superioris 

AU 06 Cheek Raiser Orbicularis Oculi, Pars Orbitalis 

AU 07 Lid Tightener Orbicularis Oculi, Pars Palpebralis 

AU 09 Nose Wrinkler Levator Labii Superioris Alaeque Nasi 

AU 10 Upper Lip Raiser Levator Labii Superioris, Caput Infraorbitalis 

AU 12 Lip Corner Puller Zygomatic Major 

AU 14 Dimpler Buccinator  

AU 15 Lip Corner Depressor Depressor Anguli Oris 

AU 17 Chin Raiser Mentalis 

AU 20 Lip Stretcher Risorius 

Au 23 Lip Tightener Orbicularis Oris 

AU 25 Lips Part Depressor Labii, Relaxation of Mentalis 

AU 26 Jaw Drop Masetter; Temporal and Internal Pterygoid relaxed 

AU 45 Blink Relaxation of Levator Palpebrae and Contraction of 

Orbicularis Oculi, Pars Palpebralis 
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Figure 5. Histogram of frame detection confidence 

4.2 SSQ severity categorization 

We used two different representations of SSQ scores: continuous and discrete. The 

discrete representation was mainly used for visualization. For the discrete, we 

categorized motion sickness severity into four levels: none, low, moderate, and high, 

based on the distribution of motion sickness scores shown in Figure 6 and Table 4.  

 

Table 4. SSQ scores and categories 

SSQ Score Corresponding Category % of Participants 

0 None 21% 

> 0 & < 10 Low 29% 

> 10 & < 50 Moderate 46% 

>  50 Severe 4% 
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Figure 6. A histogram of the SSQ scores  

 

4.3 Facial action units analysis 

We expected that if facial action units change as a result of motion sickness, they 

change over time, and hence there should be significant correlation between action 

units’ intensity and time. However, looking at the correlation matrix in Figure 7, there was 

no strong correlation between time and action units. 

Although there were no significant correlations between time and action units, we 

developed multiple models to examine the predictability of SSQ score through changes 

in facial action units.  
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Figure 7. Correlation matrix of facial action units and time 

 

First, we standardized the facial action units: 

 

𝐴𝐴𝑈𝑈𝑖𝑖𝑖𝑖 =
𝐴𝐴𝑈𝑈𝑖𝑖𝑖𝑖 − μ(𝐴𝐴𝑈𝑈𝑖𝑖)

σ(𝐴𝐴𝑈𝑈𝑖𝑖)
 

 

Then we calculated the change in action unit values between the first 900 frames (30 

seconds) and the last 900 frames (30 seconds). We used the difference of the 17 action 

units as predictor variables and the SSQ score as the dependent variable. 

Then we developed models with varying levels of complexity, including linear regression 

models and support vector machines to account for the non-linearity in the data. There 

was no significance of the models predicting the SSQ score, and none of the models 

explained the variation in the data. 
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To visualize the underlying structure of the facial action units data and examine how 

they map to the scores of SSQ, given the high dimensionality of the data, we used a 

dimensionality reduction technique. Dimensionality reduction techniques reduce the 

dimensionality of the data into a few components that capture the most variance within 

the variables. Some of the techniques rely on linear correlations in the data such as 

Principal Component Analysis (PCA) [32] others find non-linear correlations, such as t-

distributed Stochastic Neighbor Embedding (t-SNE) [33] and Uniform Manifold 

Approximation and Projection (UMAP) [34]. Here, we used UMAP because of its 

reproducibility and efficiency advantages while accounting for the non-linear structure of 

the data. Figure 8 shows a UMAP representation of the changes in each facial action 

unit for each person. We see there are no clear patterns between the action units and 

the motion sickness scores, which validates our previous findings of no correlations 

between action units and time. 
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Figure 8. A UMAP dimensionality reduction presentation of the facial action units 

 

We believe that our results did not show any correlations between facial action units 

and motion sickness scores due to two main reasons. First, by careful exploration of the 

videos, we found that participants tended to get severely sick after an evasive 

maneuver, and they stopped the experiment and withdrew right after. Hence, we do not 

think the video data were representative of motion sickness. Second, the present data 

provided one SSQ rating for each drive. Hence, we were not able to model facial action 

units in a continuous way to develop a potential continuous predictor of motion sickness. 

4.4 Head pose analysis 

Similar to the action units analysis, we examined the head position and rotation to 

investigate whether or not head pose is correlated to sickness. OpenFace defines the 

position of the head on a 3D coordinate system relative to the camera as shown in 
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Figure 1, and it defines the head rotation in terms of Euler angles (i.e., pitch, yaw and 

roll). For more details see Baltrusaitis [30].  

Based on the postural instability theory [7], and previous research results [35], that 

suggest increased head movement as a contributor to motion sickness, we expected to 

see a positive correlation between the standard deviation of the head position and the 

SSQ score. Interestingly, this was not the case. However, a linear regression model 

revealed that drivers’ z-distance from the camera was positively correlated with SSQ 

scores, while their x-displacement was negatively correlated with motion sickness 

scores. No other variables were found significant, including the existence (and lack of 

existence) of motion in the simulator. Table 5 shows the summary statistics of the linear 

model. This might be a result of visually induced motion sickness; the driver’s eye point 

is not calibrated to the design eye point. Hence, careful calibration of the participant’s 

seating position might reduce instances of motion sickness. 
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Table 5. Summary statistics for the linear regression model of head position, R2 = 

0.19 

Variable Estimate SE t-statistics p-value 

(Intercept) 4.43    21.63 0.21 0.84 

Mean x-position -0.21 0.08 -2.82 0.005 * 

Mean y-position -0.09 0.07 -1.35 0.18 

Mean z-position 0.11 0.04 2.69 0.008 * 

SD x-position -0.21     0.28 -0.6   0.45   

SD y-position -0.26  0.29  -0.90   0.37  

SD z-position -0.05   0.10 -0.55   0.59 

Mean x-rotation 1.01 15.65 0.07 0.95 

Mean y-rotation -14.24 28.97 -0.49 0.62 

Mean z-rotation -5.94 23.29 -0.26 0.80 

SD x-rotation -33.92 33.42 -1.01 0.31 

SD y-rotation -15.34 43.95 -0.35 0.72 

SD z-rotation 39.68 46.78 0.85 0.40 
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Figure 9. Scatter plot and regression line of X-axis head position and SSQ score 

 

 
Figure 10. Scatter plot and regression line of Z- axis head position and SSQ 

Even after removing the outlier in Figure 10, the results were consistent. 



 

 

35 A Machine Vision Approach for Estimating Motion Discomfort in Simulators 

5 Tool Development 

Through the exploration of the videos, we developed a tool for video analytics that is 

very promising and can enhance the human-machine vision partnership in coding video 

data collected from driving simulators and on-road situations.  The tool provides insight 

to the analyst into which frames to label based on unsupervised machine learning 

clustering. The analyst can provide labels to the computer to be used in the training of a 

supervised machine learning algorithm. An overview of the app is shown in Figure 11. 

 

 

Figure 11. An overview of the labelling app 

  

We used UMAP to reduce the dimensionality of the action units and head pose data 

obtained from OpenFace. The analyst can brush clusters in the UMAP visualization and 

see the corresponding frames, as shown in Figure 12. 
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Figure 12. UMAP space and corresponding frames 

 

The analyst can also explore a specific frame or frames in a specific window of time.  

By controlling the sliding bars shown in Figure 13-a, a close up of the action units 

timeline is projected as shown in Figure 13-b. The selected frames are then highlighted 

in the UMAP space as shown in Figure 14. In other words, the user will be able to look at 

spikes in the action units, see the corresponding frames, and investigate different 

clusters in the UMAP space before labeling similar frames. 

Finally, the analyst can add labels to the brushed frames in the UMAP space by two 

sliding bars: one for arousal and one for valance, and also by adding detailed labels in 

the comments box as illustrated in Figure 15. 

Brushed Points 
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Figure 13. Action units timeline zooming window 

 

 

Figure 14. Highlighted selected frames 

 

 

 

 

a 

b 
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Figure 15. Labeling of frames 

 

This tool can be used for further research on the topic of motion sickness and also in 

other fields and areas that rely on video analytics like affective computing. Humans can 

pick up cues that computers do not and vice versa. Hence, it is clearly valuable to use 

such a tool that leverages human judgment skills, particularly in innovative fields of 

research. 
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6 Conclusions 

6.1 Summary of results and future work recommendations 

In this project, we examined facial action units and head position as potential 

predictors and estimators of motion sickness. Developing a system to monitor motion 

sickness in real time can be valuable in multiple ways. First, it can be used in simulators. 

Simulators are a fundamental tool of human factors research with many advantages 

[36]. however, they induce motion sickness and that can undermine the validity of the 

collected data. Second, it can be used in automated vehicles where motion sickness is 

an actual risk that threatens their success [24]. 

In these analyses, we found the driver’s proximity to the monitor to be strongly 

correlated to the severity of motion sickness. We believe that this is a result of visually 

induced motion sickness due to the difference between the design eyepoint and the 

actual eye point of the participant. Hence, we recommend careful calibration of 

participants' seating position in order to combat motion sickness. 

Contradictory to our expectations, there were no significant correlations between 

facial action units and motion sickness. We believe that a combination of the present 

method of data collection and the experimental design presented a challenge in 

developing motion sickness predictive models from the facial action units. Hence, we 

recommend the following for future research:  

First, we suggest designing an experiment that is specifically aimed at looking at 

motion sickness. Hence, a scenario that gradually builds up discomfort rather than 

sudden maneuvers that make drivers withdrew immediately afterwards. And second, we 

suggest the use of another more continuous measure of motion sickness rather than a 

one-time, severity score at the end of the drive [19].  

Finally, for the purpose of video exploration, we developed a software tool that can 

be very beneficial to video analytics research. The tool allows the scientist and the 
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computer to label frames of a given video collaboratively. This tool can be used in the 

future in a wide range of applications but is particularly valuable for underexplored areas 

that require human judgment skills to train the computer. 

6.2 Summary of student involvement 

The student led all steps of the project, from brainstorming ideas for the proposal to 

the final report writing. The project allowed the involved student to enhance her 

research, problem-solving, and project management skills. The project also allowed the 

student to demonstrate the results at a conference and network with experts from the 

transportation field at the Transportation Research Board Annual Meeting in January 

2020. 

6.3 Technology transfer 

Data produced in this project from the video reduction will be made available through 

the SAFER-SIM website. In addition, a link to the software tool will be uploaded and 

made publicly available. As a final step of the project, a webinar will be scheduled to 

present the results of this work. 
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