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Abstract  

The visual environment could have effects on the performance of automated vehicles within 

the V2X technology regarding traffic safety. This research aims to explore the effects of visual 

environment on traffic safety for the development of virtual simulation and driving simulator 

experiments. Both the effects on the speeding crashes and the severity of single-vehicle 

crashes were explored. To obtain the data of drivers’ visual environment in the real world, a 

framework was proposed to obtain the Google street view (GSV) images. Deep neural network 

and computer vision technologies were applied to obtain the clustering and depth information 

from the GSV images. To reflect drivers’ visual environment in the real world, the coordinate 

transformation was conducted, and several visual measures were proposed and calculated. 

Three different tree-based ensemble models (i.e., random forest, adaptive boosting (AdaBoost), 

and eXtreme Gradient Boosting (XGBoost)) were applied to estimate the number of speeding 

crashes and the comparison results showed that XGBoost could provide the best data fit. The 

explainable machine learning method were applied to explore the effects of drivers’ visual 

environment and other features on speeding crashes. The results validated the visual 

environment data obtained by the proposed method for the speeding crash analysis. It was 

suggested that the proportion of trees in the drivers’ view and the proportion of road length with 

trees could reduce speeding crashes. In addition, the complexity level of drivers’ visual 

environment was found to increase the crash occurrence.  

Besides, crash severity prediction enables traffic operators to expect the severity for 

reported crashes with unknown severity conditions and allocate first response resources, which 

would be beneficial for reducing the outcome of severe crashes. This research uses both 

Google Street View (GSV) image data and crash information data to predict the severity of 

single-vehicle crashes. Based on crash direction and location, four GSV images of front, left, 

right, and behind sides, for each crash location, were collected to illustrate the surrounding 

environment. The computer vision techniques were applied to get the high-dimensional 
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segmentation information from the GSV images. The four images are augmented into a two-

layer 2D data matrix. To use both GSV image and crash information data, the study proposed a 

concatenated deep learning model by combining a convolutional neural network (CNN) and a 

deep neural network (DNN) model for the prediction. The data matrixes from GSV images and 

crash data were utilized simultaneously in the concatenated deep learning model. Three years’ 

single-vehicle crashes (i.e., 2017-2019) were utilized in this study to evaluate the proposed 

method. The results indicate that integrating high-dimensional and low-dimensional data with 

the proposed framework could improve prediction performance. Meanwhile, gradient-weighted 

class activation mapping (Grad-CAM) was employed to explain the deep learning results. The 

locations in images with the highest contributions to the prediction results could be determined, 

which would be helpful to identify and interpret contributing factors for severe crashes.  

This study provided new insights to obtain detailed information from GSV images for traffic 

safety analysis. The information from the GSV images could reflect visual environment on roads 

and could be used for the development of the virtual simulation and driving simulator 

experiments. Besides, the identified effects at the pixel level could help further explore the 

effects of visual environment on the performance of automated vehicles with the V2X 

technology. 
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1 Introduction 

Speeding is one of the major factors in traffic safety. According to the National Highway 

Traffic Safety Administration (NHSTA), nearly a third of fatal crashes in the United States have 

been designated as “speeding-related” in the last decade [1]. On urban arterials, the speed limit 

violation could significantly increase the severity levels of pedestrian and bicycle crashes [2]. A 

lot of studies have been conducted to examine the contributing factors for the crash occurrence 

and speeding behavior. The factors include traffic volume, roadway geometric design, land use, 

socio-demographic characteristics, and weather, etc. For example, Cai, Abdel-Aty [3] developed 

grouped random parameter models to examine the crash occurrence on segments and 

intersections considering the roadway attributes and the zonal level effects. Afghari, Haque [4] 

categorized the speeding behavior into three levels by proportions based on the speed camera 

data. It was found that high speed limits are highly associated with moderate speed limit 

violations, compared to minor or major speed limit violations Besides, the study also revealed 

that a divided median and higher functional class could lead to more major speed limit 

violations. Besides, the topic of single-vehicle crashes is one of the essential areas of 

transportation researchers, as single-vehicle crashes tend to be more severe than other types of 

crashes. In 2018, single-vehicle crashes accounted for 28.7% of total crashes but accounted for 

56.8% of fatal crashes in the US [5]. The statistics illustrate the substantial research needs to 

have a better understanding of single-vehicle crashes and the practice needs to deploy 

appropriate countermeasures or traffic management strategies to prevent severe single-vehicle 

crashes. Moreover, previous research indicates that Emergency Medical Services (EMS) could 

have a significant impact on traffic injury severity [6]. Thus, predicting crash severity could be 

beneficial for allocating first response resources and minimizing the delays to rescue the victims 

of the potential severe crashes.  
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Recently, several studies have focused on the effects of the driving environment on drivers’ 

behavior and safety. For example, Edquist, Rudin-Brown [7] investigated the effects of road 

environment visual complexity on travel speed and reaction time by conducting a driving 

simulator study. It suggested that the visual complexity of the roadside environment is an 

important contributor to driver workload and performance. Based on a survey study, Atombo, 

Wu [8] revealed the significant effects of the driving environment on speeding and overtaking 

violations. Marshall, Coppola [9] developed statistical models to study the effects of trees on 

crash frequency in the urban area. The study indicated that tree density could reduce the 

crashes. However, to the best of the authors’ knowledge, the study about the drivers’ visual 

environment on traffic safety is limited. One possible reason is that it is difficult to obtain the 

data from drivers’ view.  

Recently, within the great development of deep learning and computer vision technology, 

detailed information including object clusters and depth could be obtained from images. In the 

era of transportation study, computer vision has been applied to count traffic volume and detect 

traffic speed [10]. Besides, some studies applied detection and tracking algorithms to get 

vehicles’ trajectory and calculate the surrogate safety measures [11, 12]. In these studies, 

researchers needed to use cameras to collect the video and image first. It might be time-

consuming to collect data in a large study area. Recently, some studies conducted to assess 

street-level urban greenery using Google Street View (GSV) [13, 14]. Through a Google API, 

users could specify the location, heading, and vertical angle when downloading the image. 

Hence, it is possible to get a lot of images with drivers’ views through GSV images. Recently, Li, 

Cai [15] proposed a method for predicting and mapping the occurrence of sun glare using GSV 

images. Google Street View (GSV) data have wide data coverage and low collection cost, which 

is one of the new data sources that could be utilized to better understand the road environment. 

In general, there are three types of GSV-related traffic research and practice. The first type of 
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research and practice aims to obtain data for a certain type of object. For example, some 

studies focused on detecting, classifying, and mapping traffic signs from GSV images using 

computer vision techniques [16-19]. The second type of research introduced new variables 

based on the GSV images, such as the percentage of grass or trees in the images or the 

studied areas [20]. In 2016, Mooney et al. assessed the environmental contributions for 

pedestrian injury using GSV data [21]. In this study, different variables, such as sidewalk, road, 

and crosswalk conditions, were extracted from GSV to represent environmental conditions. 

Recent advances in deep learning methods, including CNN, provided an opportunity to obtain 

more information from GSV data by using the image-based data matrix as model inputs. In 

2020, Tanprasert et al. collected four GSV images for each spot (i.e., 0, 90, 180, 270 degrees), 

and developed a fully connected neural network to identify crash-prone locations [22]. Another 

studies that was conducted by Li et al. developed a CNN model based on GSV images to 

predict and map the occurrence of sun glare [15]. However, only GSV data are utilized in the 

deep learning models in this type of studies. Other data, such as traffic data (e.g., Average 

Annual Daily Traffic (AADT)), roadway data (e.g., speed limit), crash data (e.g., age, gender), 

were not included in the datasets for modeling. Moreover, in 2021, Bustos et al. conducted 

research using GSV data to investigate pedestrian safety conditions [23]. In this study, the 

researchers utilized gradient-weighted class activation mapping to interpret the model results 

and identify dangerous areas, which addressed one of the common concerns of model 

explanation for deep learning models. 

Many previous studies have been performed to investigate the crash frequency and severity 

of crashes, including single-vehicle crashes, while statistical models are the primary method 

used in crash severity analysis. Binary logit, binary probit, bivariate probit, multinomial logit, 

ordered logit, random parameter logit models are the predominant statistical models for crash 

severity analysis [24-29].  In 2019, Hou et al. utilized a mixed logit model to analyze single-
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vehicle crashes on freeways. The results illustrated that concrete barriers could increase crash 

severity for senior drivers [30]. Besides the statistical methods, some research employed 

machine learning methods for crash severity analysis and found that machine learning models 

have better model performance when compared with statistical models [31-33]. In 2014, Zheng 

and Huang developed a neural network (NN) model for predicting crash severity and found that 

the NN model outperforms the ordered logit model [34]. In 2021, Yan et al. developed single-

vehicle crash severity prediction models using multiple machine learning techniques and 

compared feature importance among different models [35]. In recent years, a significant number 

of studies have been conducted that utilized deep learning methods for traffic safety research, 

especially for crash risk prediction. However, compared with the impressive progress in crash 

prediction, limited studies have been conducted that apply deep learning methods for crash 

severity prediction. Among different deep learning models, Convolutional Neural Networks 

(CNN) is one of the most prevalent methods, which requires data matrix format as inputs. In 

2021, Rahim and Hassan proposed a method that transforms variables into images and 

conducts crash severity prediction using the CNN-based deep learning method to predict crash 

severity. Precision and recall are employed in this study to evaluate the model performance. 

The results indicate that the proposed method could improve the performance of crash severity 

prediction [36].  Although data matrixes from the generated images is utilized in the deep 

learning models based on the collected variables, limited information of the roadway 

environment where the crashes happened is included for prediction. Thus, including high-

resolution/dimensional data, such as images from the crash scenarios, could further improve 

modeling performance and help to identify contributing factors for severe crashes [37].  

This study attempts to propose a novel method to obtain drivers’ visual environment from 

GSV images and explore the effects of the visual environment on speeding crashes and the 

severity of single crashes. To this end, deep learning models were applied to obtain the cluster 
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and depth information from GSV images. To explore the visual environment on the speed 

crashes, several indexes were proposed to quantify the visual environment. Then, the effects of 

the visual environment on speeding crashes were explored by developing both machine 

learning and statistical models. Besides, the study contributes to exploring the effects of visual 

environment on the severity of single crashes from three perspectives: 1) applying high-

dimensional low-cost data from GSV image for single-vehicle crash severity prediction; 2) 

proposing a concatenated deep learning model that utilizes both high-dimension GSV data and 

low-dimension data sources to predict crash severity; and 3) identifying hotspots and 

interpreting potential contributing factors in road environment using gradient-weighted class 

activation mapping (GRAD-CAM).  
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2 Exploring the Effects of Drivers’ Visual Environment on Speeding Crashes 

2.1 Methodology 

The machine learning models based on neural networks and trees are two most popular 

models in use today [38, 39]. The neural-network-based deep learning models are more 

appropriate in fields like image recognition, speed recognition, and natural language processing 

[11, 40, 41]. On the other hand, the tree-based models could have a good balance of accuracy 

and interpretability, which has made the tree-based models the most popular non-linear models. 

Hence, this study took the advantage of both approaches by utilizing neural network models to 

process images to obtain drivers’ visual environment and applying tree-based models to 

analyze crashes in an interpretable approach.  

2.1.1. Machine Learning to Process GSV Images 

(1)  GSV image collection 

The GSV panorama is a 360° surrounding image generated from the eight original images 

captured by multiple cameras by stitching together in sequences. The GSV image could be 

requested in an HTTP URL form using the GSV image API provided by the Google company1. 

Users can request a static GSV image in customized direction and angle for the locations where 

GSV is available. Figure 2-1 shows the GSV image requested by the above URL. In this 

example, the output size of GSV image and latitude and longitude of the location was specified. 

Besides, the heading indicates the compass heading of the camera which ranges from 0 to 360, 

pitch specifies the up or down angle of the camera relative to the data collection vehicle, and fov 

is the horizontal field of view for the image. Previous studies suggested that the horizontal field 

view is between 50𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 60𝑜𝑜[42]. Li et al. [13] used fov of 60𝑜𝑜to collect GSVs, which was 

 
1 https://maps.googleapis.com/maps/api/streetview?size=640x400&location= 28.78291, -

81.2729& fov=60&heading=0&pitch=0 
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adopted in the current study. To get images similar to the drivers’ view, the heading was 

determined based on the road direction and the pitch of 0 was selected.  

The current study was conducted on urban arterials. For each segment, one image is 

collected every 10 meters since images are recorded by the Google cameras every 5-20 meters 

along roads. In the above URL example, users need to register on Google Maps Platform and 

purchase to get a valid API key. In this study, a Python script was developed to download the 

GSV images by automatically using the coordinates. 

 
Figure 2-1 An example of GSV collected by the URL 

(2) Drivers’ visual environment extraction from GSV 

Studies about information extraction from images have been growing in the field of computer 

science. Deep learning has been heavily applied and developed for semantic segmentation 

from images. In this study, “Detectron2” from Facebook was used to cluster objects. Detectron2, 

starting with maskrcnn-benchmark [43], is Facebook AI research next generation software 

system that implements state-of-the-art object detection algorithms by reaching to 34.9 mask 

average precision [11]. It is also suggested that the model using the Detectron2 framework 

could reach the state-of-the-art performance for labeling objects in drivers’ view [44, 45]. For 
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example, Syed et al. [44] found that the Detectron2 framework could have a pixel accuracy of 

around 90% to detect pedestrians in different cloth and offer more stable detection results 

compared to other detection frameworks with impacts of the pixel area, occlusion rate, and 

distance. Yu et al. [45] developed models to classify risky driving scenes based on the 

Detecton2 framework, which could reach 96.4% classification accuracy. As shown in Figure 2-

2(a), different objects in the environment such as roads, trees, sky, and buildings in the drivers’ 

view could be labelled from the images. Based on the clustering results, we could know the 

object type by each pixel in the image. Then, the proportion of pixels by object type in the 

drivers’ view could be calculated, such as the proportion of trees and the proportion of roads. 

Besides, a measure was suggested to reflect the visual complexity level of drivers’ visual 

environment. The complexity level could be calculated as:  

complexity level = −∑ (𝑝𝑝𝑘𝑘(ln (𝑝𝑝𝑘𝑘)))𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙

 (1.1) 

where k is the category of object, p is the proportion of category k points, N is the number of 

object categories. Noteworthy, the complexity level has been widely used in previous studies to 

reflect the land use mix level [46].  

  
(a) Illustration of semantic segmentation 

results (b) Illustration of depth information 

Figure 2-2 Visualization of image processing 

Meanwhile, the depth information could be obtained from the 2D images. Since the GSV 

image could be treated as a mono camera, a self-supervised monocular depth estimation 
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method (monodepth2) proposed by Godard et al. [47] was used to obtain the depth information. 

It was suggested that the depth estimation method could provide an absolute relative error of 

0.115 for monocular depth estimation on the KITTI benchmark, achieving state-of-the-art depth 

estimation. The detection range by this method is from 0 to 80 meters. Figure 2-2(b) illustrates 

the depth information subtracted from the image in black and white colors.   

Through the object clustering and depth estimation, the object types and depth information 

could be obtained by each pixel (u,v) of the 2D image. In the real world, 3D points could reflect 

the location (X, Y, Z) of each object. As shown in Figure 2-3, the projection of points in the world 

coordinate system to the image pixel coordinate including three steps: (1) project points from 

the world coordinate system to the camera coordinate system; (2) project points from the 

camera coordinate system to the image coordinate system; (3) project points from the image 

coordinate system to the pixel coordinate system. The principle axis and principal point (P) 

connect the camera coordinate system and image coordinate system. To be specific, the 

principal axis is the line from the camera center perpendicular to the image plane and the 

principal point is the point where principal axis intersects the image plane. The principle axis is 

parallel to the road direction and the road surface since the headings of images were the same 

as the road direction and the pitches of all images were 0. The first projection is related to the 

extrinsic parameters of cameras including rotation and translation. This projection could be 

written as: 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = [R|t] ∗ 𝑂𝑂𝑤𝑤𝑜𝑜𝑐𝑐𝑙𝑙𝑤𝑤. [R|t] is a 4 × 4  matrix �
𝑟𝑟11 𝑟𝑟12
𝑟𝑟21 𝑟𝑟22
𝑟𝑟31 𝑟𝑟32

𝑟𝑟13 𝑡𝑡1
𝑟𝑟23 𝑡𝑡2
𝑟𝑟33 𝑡𝑡3

�, and a number 1 

is added to the world coordinate (X, Y, Z) to compute  the above equation. As the principle axis 

is parallel to the road direction and the road surface, the world coordinate system and the 

camera coordinate system could be the same. Then, (X, Y, Z) reflects the location information of 

a point by assuming that the camera center is the origin. It should be noted that the world and 
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camera coordinate systems will not be the same if the heading of an image is not the same as 

the road direction or the pitch is not 0. 

 
Figure 2-3 Point projection from the world coordinate system to the pixel coordinate 

system 

As shown in Figure 2-4, the Pinhole camera model could be applied to project points from 

the camera coordinate system to the image coordinate system. The projection on the x and y 

axis is related to the relation between the focal length of camera f and the depth of point Z. The 

projection could be expressed as:  𝑂𝑂𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 = 𝐾𝐾𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. K is a 3 × 3  matrix �
𝑓𝑓 0 0
0 𝑓𝑓 0
0 0 1

�, which 

reflects the intrinsic parameters of the camera. The f could be calculated based on the 

trigonometry, which is: 

𝑓𝑓 = (𝑊𝑊/2)/tan (𝛼𝛼/2) (2-2) 

where α is the horizontal field of view and W is horizontal number of pixels of the image. In 

Figure 2-4(b), the same focal length is applied for the vertical field of view (β) and vertical 

number of pixels (H) of the image.  
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(a) Projection on the x axis (b) Projection on the y axis 

Figure 2-4 Point projection from the camera coordinate system to the image coordinate 
system 

Finally, the point could be projected to the pixel coordinate system. As shown in Figure 2-3, 

the origin in the pixel coordinate system is at the top left corner. Hence, the projection should 

consider the offset of the principle point (𝑢𝑢𝑝𝑝,𝑣𝑣𝑃𝑃). Then, the K matrix becomes as �
𝑓𝑓 0 𝑢𝑢𝑝𝑝
0 𝑓𝑓 𝑣𝑣𝑝𝑝
0 0 1

� and 

the projection from the world coordinate system to the pixel coordinate system could be 

expressed as: 

�
𝑢𝑢
𝑣𝑣
1
�=�

𝑓𝑓 0 𝑢𝑢0
0 𝑓𝑓 𝑣𝑣0
0 0 1

� �
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

� (2-3) 

Hence, the (X, Y) in the world coordinate system could be calculated by: 

𝑋𝑋 = (𝑢𝑢 − 𝑢𝑢0) ∗ 𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡ℎ[𝑣𝑣,𝑢𝑢]/𝑓𝑓 (2-4) 

𝑌𝑌 = −(𝑣𝑣 − 𝑣𝑣0) ∗ 𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡ℎ[𝑣𝑣,𝑢𝑢]/𝑓𝑓 (2-5) 

𝑍𝑍 = 𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡ℎ[𝑣𝑣,𝑢𝑢] (2-6) 

Then, by using an inverse projection process, figures with depth information could be 

transformed into a 3D point cloud. As shown in Figures 5(a) and 5(b), we could know the exact 

X, Y, Z locations in the real world for specific objects.  
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(a) 3D point cloud data from driver’s view (b) 3D point cloud data from roadside 

view 
Figure 2-5 Illustration of 3D point cloud 

As X reflects the horizontal distance and Z reflects the vertical distance, the 3D points could 

also be projected to the satellite image based on X and Z data. Figure 6 illustrates an example 

of the satellite image view for the road part based on the semantic segmentation and 3D 

projection information. It is shown that the transformed data could be along the road in general, 

which validates the projection method in this study. Due to the large triangulation errors, points 

far away from the camera are sparser and tend to be wider (yellow lines in Figure 2-6(d)), which 

is consistent with the previous study [48, 49]. As highlighted in Areas 1 and 2 in Figure 2-5(b) 

and 2-5(d), the part of the road close to the camera could be cut in the image. Also, the objects 

on roads such as cars (highlighted in Area 3) and mislabeled objects such as the grass area 

(highlighted in Areas 4) could block some parts of roads and affect the projection results. In this 

study, the road width was used to validate the projection accuracy by using 100 images from 

different segments (Figure 7). The accuracy is calculated by: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑑𝑑𝑎𝑎𝑎𝑎(100 ∗
|𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑤𝑤𝑐𝑐𝑜𝑜𝑒𝑒|

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜
) (2-7) 

where 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑤𝑤𝑐𝑐𝑜𝑜𝑒𝑒 are the observed and estimated road width. It shows that high accuracy 

(over 90%) could be obtained at the distance from 25 meters to 50 meters. Low accuracy is 

obtained at the location close to the camera since the view could be cut at the bottom of the 

image. Meanwhile, the accuracy of locations far away from the camera is also low due to the 
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sparse effect of cloud points.  Hence, the data of the 30-meter distance from 25 meters to 50 

meters are used for the following safety analysis. Since the GSV images are requested by 10 

meters, the average value of three images is calculated and used.  

 
Figure 2-6 Illustration of satellite image view (a: original Google street view; b: sematic 

segmentation; c: depth estimation; d: projection of satellite image view) 
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Figure 2-7 Projection accuracy based on road width 

Based on the X and segmentation information, the distance of trees away from the edge of 

roads could be obtained. The trees within 10 meters away from the roads will be used to 

calculate the proportion of road length with trees. It should be noted that two variables related to 

trees are calculated, which are the proportion of trees in the drivers’ view and the proportion of 

road length with trees. As shown in Figure 2-8, the proportion of tress in drivers’ view reflects 

the canopy of trees at a certain location while the proportion of road length with trees indicates 

how many trees the drivers could see along the road.  
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Figure 2-8 Illustration of tree canopy and road length with trees 

Figure 2-9 shows the flowchart of processing GSV images to get the measures related to 

drivers’ visual environment. Four steps were involved which are preparing base map, requesting 

GSV images, processing images, and calculating measures. At the first step, the direction and 

coordinates are collected and used as the input parameters to request GSV images. Different 

computer vision techniques are applied to get the clustering and location information for each 

pixel in an image. Finally, different measures related to the drivers’ visual environment are 

calculated based on the information at each pixel.   
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Figure 2-9 Flowchart of GSV image processing based on machine learning 

2.1.2. Machine Learning for Crash Analysis 

(1) Machine learning to estimate crash counts 

In this study, the tree-based ensemble methods were used to estimate the crash counts. 

The ensemble learner utilizes decision trees as weak learners and generate the expectation of 

results based on the combined outputs of all learners. Usually, the estimation performance of 
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the ensemble learners is better than that of a single learner. Compared to other algorithms, the 

tree-based ensemble algorithms have the following major advantages [50-52]: 

• The algorithms are non-parametric and don’t assume that the data follow a specific 

distribution 

• The multi-collinearity of features does not affect the accuracy of the model. Features do 

not need to be removed to decrease the correlations and interactions between them. 

Hence, the two variables related to trees could be used for the analysis at the same 

time.  

• The algorithms are robust against overfitting since they include multiple weak learners 

that underfit (high bias) and combine the predictions into a stronger learner.  

It should be noted that many studies have developed statistical models such as Poisson or 

negative binomial models to estimate crash counts [3, 53]. However, the recent studies have 

revealed that some features show clear non-linear relationships with the crash counts, which 

challenge the linearity assumption commonly used for the statistical models [54]. Meanwhile, 

the tree-based machine learning method could better capture the non-linear relationship and 

achieve better prediction accuracy compared to the statistical models [55].  

The bagging and boosting are the two major ensemble methods of the tree-based models. 

The bagging is a parallel learning process. For each round, a random subset of samples is 

drawn from the training sample randomly but with the same distribution. These selected 

samples are then used to grow a decision tree (weak learner). Then, the average prediction 

value is chosen as the final prediction value. On the other hand, the boosting approach is an 

algorithm that trains the learners sequentially and assigns the weighting factor to each learner 

[56]. One bagging method (i.e., random forest) and two boosting methods (i.e., adaptive 

boosting and extreme gradient boosting) were adopted to estimate the crash counts in this 

study.  
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(a) Random forest 

The random forest (RF) was developed by Breiman [57] based on the bagging approach. 

The RF approach involves two randomized procedures before searching for the optimal features 

and split points. First, a fixed number from the training set is selected randomly. Then, the RF 

selects random subsamples for each iteration of growing trees. The RF could reduce the 

overfitting based on the two procedures. The final prediction results of the RF are obtained by 

averaging the individual results of all learners. 

(b) AdaBoost 

The adaptive boosting (AdaBoost) was first introduced by Freund and Schapire [58]. 

Different from the RF, the AdaBoost provides sequential learning of predictors and adjusts 

weights to each observation based on the errors. Initially, all observations are weighted equally. 

Then, during the iterative training process, the observations which are incorrectly estimated by 

the learners will carry more weights. Therefore, the algorithm could adapt and reduce the bias 

iteratively.  

(c) XGBoost 

The gradient boosting framework introduced by Friedman [59]. Similar to AdaBoost, gradient 

boosting sequentially trains predictors and each one corrects its predecessor. However, instead 

of adjusting the weights for each incorrect estimation at each iteration, Gradient Boosting 

attempts to fit the new predictor to the residual errors made by the previous predictor. Gradient 

boosting is generally very slow in implementation due to the sequential modeling training. 

Extreme Gradient Boosting (XGBoost) is a relatively new algorithm proposed by Chen and 

Guestrin [60], which is an implementation of gradient boosting decision trees for speed and 

performance. The XGBoost provides a parallel tree boosting algorithm that could optimize the 

training process fast and accurately.  
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(2) Machine learning to interpret effects of features  

While machine learning is expected to provide estimation results with high accuracy, it has 

been a key challenge to interpret the effects of variables on the output. In this study, the 

interpretability of tree-based ensemble models is explored to understand why a certain 

prediction is made so as to better suggest countermeasures to enhance transportation safety. 

The Shapley Additive exPlanations (SHAP) method, proposed by Lundberg and Lee [61], is 

used to measure the variable importance and interpret the effects. SHAP is a game theoretic 

approach to explain the output of the prediction model. The goal of SHAP it to explain the 

prediction for any feature as a sum of contributions from its individual feature values, while the 

contribution of each feature is allocated based on the marginal contribution [62]. Given a feature 

value i, the SHAP value could be obtained by:  

ф𝑖𝑖 = �
|𝑆𝑆|! (|𝐹𝐹| − |𝑆𝑆| − 1)!

|𝐹𝐹|!
[𝑓𝑓𝑆𝑆∪{i}(𝑥𝑥𝑆𝑆∪{i})− 𝑓𝑓𝑆𝑆(𝑥𝑥𝑆𝑆)]

𝑆𝑆⊆F

 (2-8) 

where |𝐹𝐹| is the total number of features, S represents any subset of features that doesn’t 

include the ith feature and |𝑆𝑆| is the size of that subset. 𝑓𝑓𝑆𝑆∪{i}(𝑥𝑥𝑆𝑆∪{i}) indicates the model trained 

with i, and 𝑓𝑓𝑆𝑆(𝑥𝑥𝑆𝑆) is model trained without i. The SHAP value could help interpret the effects of 

features locally, which could help provide safety improvement strategies for a specific location. 

Besides, the SHAP value could be used to quantify the global impact of each risk feature by 

taking the average absolute impact on the model output magnitude: ∑ |ф𝑖𝑖|
𝑙𝑙

  (n is the total number 

of locations). The global measurement could be used to rank the feature importance and 

compare the impact among multiple risk factors.  

2.2 Data 

The data used in this study were collected from urban arterials in Central Florida. The urban 

arterials of nearly 75 miles were included and around 15,000 GSV images were requested and 

processed to get the indexes about drivers’ visual environment. From the images, the proportion 
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of trees, the proportion of buildings, and the complexity level of the drivers’ view were collected. 

In addition, the proportion of road length with trees was calculated based on the cluster and 

depth information. Figures 2-10, 2-11, and 2-12 illustrate the proportion of trees, proportion of 

buildings, and proportion of roadway length with trees on the study roads. It is shown that the 

buildings are concentrated in Areas 5 and 6, which is the City of Orlando and beach area. 

Meanwhile, the roadway segments with the high proportion of trees in drivers’ view or proportion 

of roadway length with trees could be found in different areas.  

The speeding crashes were collected from the Florida Department of Transportation 

(FDOT). In addition to the driving environment data collected from GSV, other exogenous 

variables were also collected, which included traffic data, roadway information, land use 

attributes, and socio-demographic for each segment. For traffic data, the Vehicle Miles 

Travelled (VMT) was obtained by multiplying the Average Annual Daily Traffic (AADT) by the 

segment length. Besides, the proportion of truck traffic, and daily transit frequency were 

collected from FDOT. In addition, the probe vehicle data INRIX were collected from RITIS by 5 

minutes from 2017 to 2019. Based on each segment, the proportion of INRIX speed over the 

posted speed limit was calculated, which could indicate the general speeding trend. Seven 

roadway attributes that could be related to speed management strategies in the Florida Design 

Manual (FDM) were also identified. They are the indicator of narrow lane, average block length, 

the existence of median island on crossing, number of parking per mile, presence of road diet, 

length of the two-way-left-turn lane, and asphalt pavement. Other roadway variables such as 

lane number, speed limit, median type and width, shoulder type and width were also collected 

from FDOT. Finally, the land use and socio-demographic variables were also collected in this 

study. Table 2-1 summarizes the collected variables.
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Figure 2-10 Proportion of trees in the drivers’ view on urban arterials 
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Figure 2-11 Proportion of buildings in the drivers’ view on urban arterials 
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Figure 2-12 Proportion of roadway length with trees in the drivers’ view on urban arterials 
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Table 2-1  Summary of Variables 

Variable mean S.D. min. max. 
Speeding crashes 1.24 1.51 0 8 
Traffic variables 
Vehicle Miles Travelled (VMT) 14,505 8,920 2,145 40,523 
Proportion of truck traffic 6.76 3.31 1.77 16.19 
Average daily transit frequency 19.97 18.05 0 72 
Proportion of INRIX speed data over the speed limit 0.18 0.14 0 0.78 
Drivers' visual environment data from GSV images 
Proportion of tree view 0.13 0.06 0.03 0.31 
Proportion of building view 0.03 0.03 0 0.22 
Complexity level of driving view 0.73 0.03 0.65 0.79 
Proportion of road length with trees 0.28 0.06 0.15 0.48 
Roadway variables  
Variables related to FDM speed management strategies         
Indicator of asphalt pavement (1: yes; 0: no) 0.84 0.36 0 1 
Indicator of narrow lane (lane width<12 feet) (1: yes; 0: 

 
0.36 0.48 0 1 

Average block length (mile) 1.60 3.26 0.06 10.33 
Existence of median island on pedestrian crossing (1: 

   
0.07 0.25 0 1 

Log (number of parking spot per mile) 0.27 1.12 0 6 
Presence of road diet (1: yes; 0: no) 0.44 0.5 0 1 
Log (length of two-way-left-turn lane) 0.13 0.23 0 1 
Other roadway variables 
Number of lanes 2.10 0.52 1 4 
Speed limit (mph) 38.59 5.2 25 55 
Pavement condition  4.17 0.8 0 5 
Raised median (1: yes; 0: no) 0.44 0.5 0 1 
Median Width (feet) 16.53 9.32 0 55.07 
Curb, gutter inside shoulder type (1: yes; 0: no) 0.34 0.47 0 1 
Width of inside shoulder (feet) 0.97 1.47 0 9 
Curb, gutter outside shoulder type (1: yes; 0: no) 0.48 0.5 0 1 
Width of outside shoulder (feet) 3.45 1.88 0 10 
Proportion of sidewalk length 0.91 0.25 0 1 
Sidewalk width (feet) 5.09 1.35 0 10 
Proportion of bike lane length 0.12 0.3 0 1 
Proportion of bike slot length 0.01 0.05 0 0.64 
Number of signalized intersections per mile  3.11 3.15 0 16.98 
Number of access per mile  9.52 5.86 0 28.37 
Land use and socio-demographic variables 
Proportion of residential land use 0.29 0.38 0 1 
Proportion of commercial land use 0.04 0.09 0 0.62 
Land use mix 0.04 0.15 0 0.83 
Proportion of population below poverty 0.06 0.11 0 0.73 
Proportion of zero-vehicle household 0.02 0.04 0 0.22 
Proportion of commuters by walking or biking 0.02 0.04 0 0.20 
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2.3 Results and Discussion 

2.3.1 Model Development with K-Fold Cross-Validation 

The data was randomly split into training and testing datasets with a ratio of 2:1. In addition, 

a 5-fold cross-validation was implemented to train the three tree-based ensemble models. The 

cross-validation is to overcome the overfitting issue and ensure the models’ reliability in 

predicting crash counts in a new dataset. The mean absolute error (MAE), root mean squared 

error (RMSE), and 𝑅𝑅2 were used to assess the model performance. These measures, which 

could directly reflect the difference between the observations and predictions, have been widely 

employed for evaluating the model performance in the machine learning studies [37, 56]. A 

tuning process was applied to determine the best set of parameters for each ensemble model, 

especially the maximum depth of trees and number of trees to control the overfitting of the 

models. For AdaBoost, the best prediction result was determined only based on the number of 

trees, as AdaBoost has no predetermined maximum depth. The cross-validation training results 

and testing results of the three models are summarized in Table 2-2. It is clearly shown that the 

boosting methods could gain significantly better performance than the bagging method for 

estimating crash counts. Besides, by comparing between two boosting methods, it could be 

found that XGBoost is able to provide significantly more accurate predictions. Hence, the trained 

XGBoost model will be used in the following analysis of feature effects.  

Table 2-2 Summary of results 

Model Maximum 
depth 

Number 
of trees 

MAE RMSE 𝑅𝑅2 
Training Testing Training Testing Training Testing 

Random 
Forest (RF) 6 50 0.8 0.87 1.12 1.33 0.74 0.68 

Adaptive 
Boosting 

(AdaBoost) 
- 140 0.77 0.81 1.01 1.23 0.81 0.71 

eXtreme 
Gradient 
Boosting 

(XGBoost) 

6 260 0.41 0.42 0.68 0.74 0.92 0.84 
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2.3.2 Effects Analysis 

Figure 2-13 shows the global feature importance (left bar chart) and local explanation 

summary plot (right plot). For the local explanation summary, the red color indicates larger value 

of the explanatory variables. Unsurprisingly, the VMT significantly prevails as the most important 

feature. Moreover, higher values of this feature result in higher SHAP values, corresponding to 

more speeding crashes. Meanwhile, other two traffic related variables which are speeding 

proportion and proportion of truck traffic are relatively important variables. As the speeding 

proportion reflects the speeding level, higher speeding proportion could lead to more speeding-

related crashes. As revealed in many studies, the proportion of heavy traffic is negatively 

associated to the crash occurrence [3, 53].  
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Figure 2-13 Global feature importance and Summary of SHAP value 
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The four variables related to drivers’ view, three variables which are the proportion of 

buildings, the proportion of road length with trees, and the proportion of trees are among the top 

ten important variables among all explanatory variables. However, their effects are not clear 

from the summary plot in Figure 2-13. Hence, the scatter plot of variables related to drivers’ 

visual environment vs SHAP values are presented in Figure 2-14. Polynomial functions with 

degrees from 1 to 3 were applied to the data and the model with the best fit was plotted in the 

figures. As shown in Figure 2-14(a), a polynomial function with degree of 2 could provide the 

best fit for the proportion of trees in drivers’ view. As noted above, the proportion of trees is 

related to trees’ canopy. In general, the trees in drivers’ view could reduce the speeding crashes 

as most of SHAP values are negative, which is consistent with the previous study by Marshall et 

al. [9]. The magnitude of the negative effect decreases when the tree proportion increases from 

0 to 0.15, and then the magnitude increases with the increase of the tree proportion. The linear 

relation between the proportion of road length with trees and crash count is shown in Figure 2-

14(b). It suggests that the proportion of road length with trees could reduce the number of 

speeding crashes. The previous driving simulator study found that drivers tend to decrease their 

speeds significantly and move toward the centerline of the road when trees are present [63]. 

Besides, it was found that the crashes could decrease with the increase in the tree density [9]. 

With the effects of trees on speeding and crash occurrence, it is reasonable to find a negative 

effect of trees on speeding crashes. Figure 2-14(c) illustrates the effects of the building 

proportion on the crash counts, and a 3-degree polynomial could provide the best fit. It reveals a 

negative effect of the building proportion on crash counts when the building proportion is very 

small. With the increase of the building proportion, its effect on speeding crashes increases and 

becomes positive when its value is smaller than 0.05. Then, the effect of the building proportion 

decreases as its value increases from 0.05 to 0.2.  In addition to the three variables, the 

complexity level of drivers’ view also has a restively important effect on speeding crashes. Both 

Figure 2-13 and Figure 2-14(d) clearly show the effect of complexity level. With a linear relation 
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revealed in Figure 2-14(d), it shows that a complex view could lead to more crashes, with some 

exceptions when the complexity level is around 0.71 or 0.78. The result is reasonable 

particularly that a previous study suggested that drivers have difficulty in reacting for an 

emergency when they have to deal with the increased visual complexity [64].  

The effects of several other features were also revealed in Figure 2-14. First, it is found that 

the intersection density could result in more crashes as intersections could increase traffic 

interaction [3]. Second, it is expected that less speeding crashes could be found on roads with 

higher speed limit. In addition, Figure 2-14 shows that the wide outside shoulder could reduce 

the crashes, which is in line with the previous study [65]. Finally, the speeding crashes are less 

likely to occur in the residential area.  

The developed explainable machine learning models could well balance the prediction 

accuracy and the identification of factors’ effects. At the planning level, the developed model 

could be used to screen the road network and identify the hotspots with high speeding crash 

risks. For each hotspot, the explainable machine learning model could identify the local effects 

of visual environment factors and the corresponding engineering solution could be applied to 

reduce the crashes. For example, more trees could be added along the road to reduce drivers’ 

speeding probabilities, which could reduce the occurrence of speeding crashes. Besides, the 

warning sign could be added at a road segment to remind drivers not to over speed if the 

segment’s visual complexity level is high. 
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(a) SHAP value vs Proportion of trees in 

drivers’ view 
(b) SHAP value vs Proportion of road length 

with trees 

  
(c) SHAP value vs Proportion of buildings in 

drivers’ view 
(d) SHAP value vs complexity level of view 

Figure 2-14 Scatter plot of SHAP values vs variables related to drivers’ visual 
environment  
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3 Exploring the Effects of Drivers’ Visual Environment on Single-Vehicle Crash 

Severity 

3.1 Methodology 

3.1.1. GSV Images Collection and Processing 

The GSV could provide 360° surrounding images generated from eight original images that 

were captured by multiple cameras and stitched together in a sequence. The GSV images could 

be downloaded in an HTTP URL format using the GSV API provided by Google. To request a 

static GSV image, the heading and angle of the view could be customized for a location with 

coordinate information. To reflect the road environment from the GSV images, four images 

representing left, front, right, and behind were requested and each image has a field of 90° view. 

Figure 3-1 illustrates an example that includes the four-side images for a crash location. The 

direction information based on crash data is used to determine the headings of images. For 

example, if a crash occurred at northbound of a road that has a bearing (i.e., a clockwise angle 

from the north direction) of  10°, the headings to request the front, right, behind, and left sides 

images are 10°, 105°, 195°, and 285°, respectively. In this study, a Python script was prepared to 

download the GSV images automatically based on the crash coordinates that were obtained from 

the crash database. The resolution for each image is 400×640. 



 
 

32 
 

32 Investigate the Effects of V2X Technologies for Automated Vehicles Using Virtual Simulation and Driving Simulator Experiments 
--Exploring the Effects of Visual Environment on Traffic Safety 

 

 

  
(a) Illustration of 4 GSV image locations (b) Examples of 4 GSV images 

Figure 3-1 Illustration of GSV images for 4 sides 
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After collecting the GSV data for the crash locations, computer vision techniques are utilized 

to identify objects from the images. The recent development of deep learning techniques makes 

it possible to accurately recognize objects in images. In this study, “Detectron2” was applied to 

detect objects. Detectron2 is a Facebook Artificial Intelligent (AI) research next-generation 

software system that implements state-of-the-art object detection algorithms, including Mask R-

CNN [43]. The previous research has validated that the Detectron2 framework could reach the 

state-of-the-art performance for detecting objects from street images [44]. As shown in Figure 3-

2, different objects in the GSV images such as roads, trees, buildings, fence, and sky, could be 

identified from the images. Based on the detection results, the object types (e.g., road, sky, tree) 

for each pixel in the images could be labeled. Meanwhile, as this study attempts to utilize GSV 

images to analyze the effects of road environment on crash severity, the labels of cars and 

persons on roads were replaced by road.  
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Figure 3-2 Illustration of semantic segmentation results 

For each image, a 2D matrix of 400×640 could be generated to represent the object type at 

each pixel in the image. Thus, four 2D matrixes were obtained for a crash. Figure 3-3 illustrates 

the data matrix generation process based on GSV images. As GSV images represent the 

surrounding environment of the crash events, the edges of the images are spatially connected 

with each other in the real world. In Figure 3-3(a), the edges with the same colors indicate the 

real-world spatial connection for the two edges, including edges R1&R2, edges B1&B2, edges 

P1&P2, and edges Y1&Y2. The 4 side GSV images for each crash need to be combined for the 

prediction process. To combine the data of the 4 side images, one method is to stitch the data at 

a same layer. Thus, a new matrix of 400×2560 (640×4=2560) could be generated (Figure 3-3(b)).  

However, as shown in Figure 3-3 (b), the spatial connection with edge R1 and R2 will not exist if 

this combination method is utilized. To overcome this limitation, the GSV image data of the 4 

sides were augmented into two layers of 2D data matrix in this study (2×400×1280) (Figure 3-
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3(c)). Moreover, in order to be consistent with the real-world spatial connection, the images of 

behind and right were flipped before the combination. Thus, the edges with the same colors are 

spatially connected in the data matrixes.  

 
(a) Illustration of 4 GSV image locations 

  
(b) One layer of the 2D data matrix (c) Two layers of the 2D data matrix 

Figure 3-3 Illustration of data matrix for the GSV image 

3.1.2. Crash Severity Prediction Model 

In this study, the crash severity prediction is based on both high-dimensional (i.e., GSV image 

data) and low-dimensional data (i.e., crash information). As shown in Figure 3-4, a concatenated 

neural network architecture is developed to simultaneously process the two databases. Two fully 

connected layers corresponding to the two databases are concatenated into a layer for the final 

prediction output. The convolutional neural network (CNN) is adopted for the GSV image data in 

this study since the data is in 2 dimensions and has 2 layers. The CNN structure is widely used 

in image recognition and has proven to be a powerful tool to understand the spatial interaction in 
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the local matrix units. CNN models have been applied in recent research for traffic crash prediction 

[37, 66, 67]. This method captures the local correlation through convolution layers instead of 

general matrix products, which in turn reduces the total number of adjusted parameters. By using 

multiple small filters, the input matrix layers could be projected to multiple convolutional layers. 

The max-pooling layer is used to reduce the number of adjusted parameters. Besides, batch 

normalization (BN) and dropout techniques are adopted to avoid overfitting. On the other hand, 

the dense layer is applied to connect the data of crash information before the concatenation. As 

noted above, the crash severity levels were divided into two levels: severe and non-severe. 

Hence, the Softmax activation function is adopted as the last output layer of the prediction model.  

 

Figure 3-4 Network architecture of the concatenated prediction model 

Table 3-1 summarizes the architecture of the concatenated deep learning model in this study. 

The model comprises two parts, while one is for the parallel layers and the other is for the 

concatenated layers. The parallel layers include the CNN model for the GSV image data and the 

NN model for the crash information data. The CNN model has 6 layers, of which 2 layers are 

convolution layers, 2 max-pooling layers, and 2 fully connected layers. Each convolution layer is 

followed by a max-pooling layer. The stride =1 and padding =1 were used to ensure that the 

dimension of the GSV image data matrix decreased gradually. The NN model has 1 layer 
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connected to the input layer. The CNN model and NN model were estimated at the same time. 

Then, the 2 output layers from the CNN architecture and NN models are concatenated into 1 

layer, which is followed by 2 fully connected layers to get the output. Batch Normalization (BN), 

ReLU, and dropout techniques were used to train the model and avoid overfitting. With the trained 

concatenated model, both GSV image data and crash data could be used simultaneously to 

predict crash severity.  
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Table 3-1 Architecture for the concatenated model 

Architecture for the parallel layers NN architecture for the concatenated layer  

CNN 
architecture 

for GSV 
image data 

#Layer Layer type Layer description #Layer Layer type Layer 
description 

1 
Convolution 

+BN 
+ReLU 

Filter size=5×5 
Stride=1, 

Padding=1 
Output 

size=4×396×1276 

1 Concatenate layer 

#Neuron1=256 
#Neuron2=256 

Output size 
=512 

2 Max pooling 
+Dropout (0.2) 

Padding=2, 
stride=2 
Output 

size=4×198×634 

2 

Fully connected 
+BN 

+ReLU 
+Dropout (0.2) 

#Neuron=512 
Output size 

=64 

3 
Convolution 

+BN 
+ReLU 

Filter size=5×5 
Stride=1, 

Padding=1 
Output 

size=8×194×634 

3 

Fully connected 
+ReLU 

+Dropout (0.2) 
+Softmax 

#Neuron=64 
Output size=2 

4 Max pooling 
+Dropout (0.2) 

Padding=2, 
stride=2 
Output 

size=8×97×317 

- - - 

5 Flatten layer  
#Neuron=8×97×317 

Output 
size=245992 

- - - 

6 
Fully connected 

+ReLU 
+Dropout (0.2) 

#Neuron=245992 
Output size=256 - - - 

NN 
architecture 

for crash 
data 

1 

Fully connected 
+BN 

+ReLU 
+Dropout (0.2) 

#Neuron=42 
Output size=256 - - - 

3.1.3. Interpreting the Deep Learning Model through Activation Mapping 

One of the common concerns for NN or CNN algorithms is the models are perceived as “black 

box” and lack the understanding of their internal functions. In order to overcome the limitation, 

some efforts have been conducted to explain and interpret machine learning or deep learning 

models. In 2017, Selvaraju et al. proposed the approach named “gradient-weighted class 

activation mapping (Grad-CAM),” which interpreted CNN models by highlighting the important 

regions in the images [68]. In this study, Grad-CAM is used to identify the important regions in 

images affecting the crash severity. Given input image matrix and the trained deep learning 

model, Grad-CAM could generate a localization map by using the gradient information of the 

specific target class (i.e., severe crash) to compute the target class weight of each feature map 
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of the last convolutional layer of the CNN model before the final classification. Then, the final 

localization map is synthesized from the sum of these target class weights. The Grad-CAM map 

for the severe crashes could help to visually identify the patterns and objects learned by the CNN 

and interpret the reason why the severe crash occurred [23]. Since the images have been fully 

segmented, the identified objects could be overlapped with the dangerous regions at the pixel 

level. By analyzing the number of important pixels, the object categories more relevant to 

determine severe crashes could be identified.  

3.2 Crash Data 

Single-vehicle crashes that occurred from 2017 to 2019 in Central Florida were collected from 

the Signal Four Analytics (S4A) database. In total, 6,420 single-vehicle crashes on partially 

controlled-access roads were collected. The crash severity is categorized into five levels: (1) fatal 

crash; (2) incapacitating injury crash; (3) non-incapacitating injury crash; (4) possible injury crash; 

and (5) property damage only (PDO). In this study, the fatal and incapacitating injury crashes 

were combined as severe crashes, and the rest of the crash severity levels were labeled as non-

severe crashes. The frequencies of the severe and non-severe crashes were 1,774 (27.6%) and 

4,646 (72.4%), respectively.  

The crash data variables were divided into five categories, including driver, crash, 

environment, roadway, and traffic. The driver, crash, and environment information were collected 

from the crash database (i.e., S4A). Meanwhile, the information related to roadway and traffic was 

obtained from the Florida Department of Transportation (FDOT) database based on crash 

locations. The frequency and percentage descriptions were summarized for the dummy variables 

(Table 3-2), while the mean and standard deviation were described for the continuous variables 

in Table 3-3. The inclusion of different variables is based on the previous relevant studies about 

crash severity [24, 26, 30].  
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Table 3-2 Statistical description of dummy variables 

Category Variable Frequency Percentage 

Driver information 

Gender Male 4157 64.75% 
Female 2263 35.25% 

Age 

19 years old or younger 579 9.02% 
Between 20 and 24 years old 2590 40.34% 
Between 25 and 54 years old 1799 28.02% 
Between 55 and 64 years old 790 12.31% 

65 years old or older 662 10.31% 
Citation Indicator of citation involvement 1777 27.68% 
Driving under influence 

  
 Indicator of DUI involvement 455 7.09% 

Distraction related   Indicator of distraction 
 

727 11.32% 
Crash characteristics 

Location of first harmful 
event 

Off roadway 1534 23.89% 
On roadway 2216 34.52% 

Shoulder 298 4.64% 
Median 147 2.29% 

Intersection-related  Indicator of intersection related 728 11.34% 
Work zone related  Indicator of work zone related  155 2.41% 
Obstruction on roadway  Indicator of obstruction 

 
91 1.42% 

Urban area  Indicator of urban area 4025 62.69% 

Day of week Weekday 4590 71.50% 
Weekend 1830 28.50% 

Time of day 

Peak (6am-10am and 4pm-7pm) 1887 29.39% 
Off-peak (10am to 4pm) 2003 31.20% 

Evening (7pm-12am) 1456 22.68% 
Before dawn (12am-6am) 1074 16.73% 

Environmental features 

Light condition 
Daylight 3536 55.08% 

Dark with lighting 1970 30.69% 
Dark without lighting 914 14.24% 

Adverse weather Rain 722 11.25% 
Fog 38 0.59% 

Wet road surface  Wet 1133 17.65% 
Roadway features 

Functional classification 
Arterial 4341 67.62% 

Collector 2042 31.81% 
Local road 37 0.58% 

Median type 

Paved median 1370 21.34% 
Raised separation 733 11.42% 
Vegetation or curb 2334 36.36% 

no median 1983 30.89% 
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Table 3-3 Statistical description of continuous variables 

Category Mean Standard deviation 
Roadway features 
Median width 17.48 20.58 
Pavement condition 3.78 0.76 
Speed limit 42.84 9.04 
Number of lanes 2.08 0.60 
Lane width 11.76 1.04 
Traffic features 
AADT 21339.92 15484.97 
Percentage of heavy vehicle volume (%) 7.35 5.09 

 

3.3 Results and Discussion 

3.3.1. Model Development and Comparison 

In this study, a total of 6,420 single-vehicle crashes (1,774 severe crashes and 4,646 non-

severe crashes) were collected to validate the proposed prediction framework. Among the 

crashes, 70% were selected for training the severity prediction and 30% were employed for testing 

the trained model. The model was tuned based on Pytorch using NVIDIA RTX 2080 Ti 11G GPU. 

The model hyperparameters are optimized using a grid-search approach and the values applied 

in the final model are presented in Table 3-4.  

Table 3-4 Parameter tuning results 

Name Tested values Selected values 
The 1st CNN convolutional filter 4, 8, 16, 32 4 

The 2nd CNN convolutional filter 4, 8, 16, 32 8 

Dropout rate 0.2, 0.4, 0.6 0.2 

Optimizer RMSprop, SGD, Adam Adam 

Learning rate 0.01, 0.001, 0.0001 0.01 

Epoch number 20, 40, 60, 80, 100 80 

Batch size 50, 100, 200, 400 100 

To validate the proposed concatenated model, a CNN model using the GSV image only and 

a NN model using crash data only were developed for model performance comparison. The 
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following measures are utilized in this study for model performance evaluation, which have been 

widely used in the previous literature: 

𝑃𝑃𝑟𝑟𝑑𝑑𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 =
𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑡𝑡𝑟𝑟𝑢𝑢𝑑𝑑 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑

𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑡𝑡𝑟𝑟𝑢𝑢𝑑𝑑 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑 + 𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑓𝑓𝑎𝑎𝑓𝑓𝑃𝑃𝑑𝑑 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝑑𝑑
 

 (3-1) 

𝑅𝑅𝑑𝑑𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓 =  
𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑡𝑡𝑟𝑟𝑢𝑢𝑑𝑑 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑

𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑡𝑡𝑟𝑟𝑢𝑢𝑑𝑑 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑 + 𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑓𝑓𝑎𝑎𝑓𝑓𝑃𝑃𝑑𝑑 𝑎𝑎𝑑𝑑𝑛𝑛𝑎𝑎𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑
 (3-2) 

𝐹𝐹1 = 2 ∙
𝑑𝑑𝑟𝑟𝑑𝑑𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 ∙ 𝑟𝑟𝑑𝑑𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓
𝑑𝑑𝑟𝑟𝑑𝑑𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 + 𝑟𝑟𝑑𝑑𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓

 

 
(3-3) 

Table 3-5 demonstrates the performance of the three models for both training and test 

datasets. It indicates that the proposed model that utilized both GSV image and crash data 

achieved the best performance for both training and test datasets. For the proposed model, the 

recall, precision, and F1-score for the test datasets are 0.707, 0.843, and 0.769, respectively. A 

NN model was developed only based on the crash information data. The comparison between 

the NN model and the proposed model illustrates that using GSV images data (i.e., high-

dimensional data) could be beneficial to identify severe crash-prone locations, as more 

information could be obtained from the images. Meanwhile, the comparison between the CNN 

model and the proposed model indicates the crash data (i.e., low-dimensional data) could provide 

additional information compared with the GSV image, including the driver, crash characteristics, 

environment, traffic, and roadway information. Thus, the proposed concatenated model that can 

incorporate both image data and numerical data (e.g., crash data) can be utilized to better predict 

the crash severity.  

Table 3-5 Model performance 

 Model Data Recall Precision F1-score 

Training 
NN crash data only 0.747 0.804 0.775 

CNN GSV image data 0.856 0.908 0.881 
Proposed model crash data and GSV image data 0.889 0.910 0.900 

Test 
NN crash data only 0.656 0.725 0.689 

CNN GSV image data 0.667 0.744 0.703 
Proposed model crash data and GSV image data 0.707 0.843 0.769 



 
 
 

43 
 

43 Investigate the Effects of V2X Technologies for Automated Vehicles Using Virtual Simulation and Driving Simulator Experiments 
--Exploring the Effects of Visual Environment on Traffic Safety 

3.3.2. Identification of Important Features to Explain the Severe Crashes 

Based on the Grad-CAM, the contributing weight at each pixel could be estimated. The weight 

ranges from 0 to 1, indicating the importance from low to high. Figure 3-5 shows the examples of 

the important regions’ spatial distributions in the images for the predicted severe crashes. The 

important regions could be utilized to explain the reason that a crash occurring at this location 

tends to be a severe crash. Based on the pixel information, the feature categories (e.g., road, 

tree, grass, and pavement) could also be identified in the important regions from the object 

segmentation outputs. The engineering solutions could be applied to the identified important 

regions to reduce the likelihood of severe crashes.      
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(a) 
Left 

  

(b) 
Front 

  

(c)  
Right 

  

(d) 
Behind 

  
Figure 3-5 Examples of important pixels with object segmentation to explain severe 

crashes 

In this study, the threshold of 0.6 was used to categorize the important pixels, which could be 

adjusted to identify less or more important pixels. Both the total number of important pixels at 

each side of the crash location and the total number of important pixels at the crash location could 
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be obtained from the images. Then, the percentage of important pixels at each side could be 

estimated by: 

𝑃𝑃𝑜𝑜𝑖𝑖𝑤𝑤𝑐𝑐,𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑃𝑃𝑡𝑡𝑎𝑎𝑓𝑓 𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑃𝑃𝑚𝑚𝑑𝑑𝑃𝑃𝑟𝑟𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑑𝑑𝑃𝑃𝑥𝑥𝑑𝑑𝑓𝑓𝑃𝑃 𝑎𝑎𝑡𝑡 𝑃𝑃𝑃𝑃𝑎𝑎𝑑𝑑 𝑃𝑃

𝑇𝑇𝑃𝑃𝑡𝑡𝑎𝑎𝑓𝑓 𝑎𝑎𝑢𝑢𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟 𝑃𝑃𝑓𝑓 𝑃𝑃𝑚𝑚𝑑𝑑𝑃𝑃𝑟𝑟𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑑𝑑𝑃𝑃𝑥𝑥𝑑𝑑𝑓𝑓𝑃𝑃 𝑎𝑎𝑡𝑡 𝑓𝑓𝑃𝑃𝑎𝑎𝑎𝑎𝑡𝑡𝑃𝑃𝑃𝑃𝑎𝑎 𝑗𝑗 
× 100 (3-4) 

The ANOVA test was conducted for 𝑃𝑃𝑜𝑜𝑖𝑖𝑤𝑤𝑐𝑐,𝑖𝑖𝑖𝑖  and it was suggested that there are significant 

differences among the four sides regarding the important pixels leading to severe crashes 

(F=5.814, P-value<0.001). Turkey’s range test was conducted to compare the percentage of 

important pixels by a pair of sides. As shown in Figure 3-6, significantly more important pixels 

could be found at the right side, with 4.45%, 2.84%, and 3.44% more pixels compared to the left, 

front, and behind sides. While there is no significant difference among the left, front, and behind 

sides, relatively less important pixels were as expected found on the left side.  

 
Figure 3-6 Comparison of important pixels in different sides 

At each side, the percentages of important pixels by the object category were also computed 

and presented in Figure 3-7. At each side, the trees account for more important pixels compared 

to other object categories. On average, around 30% of the important pixels are identified as trees. 

It is consistent with the previous studies that a collision with a tree is more likely to be severe [69]. 
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At the front and behind sides, higher percentages of important pixels are found as roads. It is 

expected since more road views could be observed from those two sides.       

  

  
Figure 3-7 Summary of important pixel by object category  
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4 Conclusions 

This study applied different machine learning methods to explore the effects of drivers’ visual 

environment on speeding crashes. Around 15,000 Google Street View (GSV) images of urban 

arterials were queried through the Google API based on the features of the study roads.  The 

deep neural network model developed by Facebook was used to cluster objects in the images. 

Based on the clustering results, indexes including the proportion of trees, the proportion of 

buildings, and the complexity level of the visual environment were calculated by counting the 

number of pixels of each cluster. Besides, another deep learning method was applied to get 

distance information from the images. By combining the clustering information, a 3D point cloud 

data was generated for each GSV image. The proportion of road length with trees was calculated. 

The information reflects the environment information from the drivers’ view and was used to 

explore its effects on speeding crashes.  

Three tree-based ensemble models (i.e., random forest, adaptive boosting (AdaBoost), and 

eXtreme Gradient Boosting (XGBoost)) were applied to estimate the number of speeding crashes. 

The comparison results suggested that the XGBoost could provide the best fit. The explainable 

machine learning method was used to explore the effects of information extracted from GSV 

images on the speed crashes. Other factors including traffic volume, speeding proportions, road 

attributes, land use, and socio-demographic characteristics were also examined. The result 

revealed that features related to drivers’ visual environment are very important contributing factors 

for speeding crashes on urban arterials. It was suggested that the proportion of trees in drivers’ 

view and the proportion of road length with trees could reduce the speeding crashes. On the other 

hand, the complexity level of the visual environment could lead to more speeding crashes. The 

results validated that more insight could be obtained by using deep learning algorithms to extract 

detailed information from GSV images. Besides, other significant factors for speeding crashes 
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were also revealed, such as traffic explore, speed limit, outside shoulder width, and intersection 

density.  

In addition to the speeding crash analysis, the effects of visual environment on crash severity 

have been also explored. In this study, 25,680 GSV images were extracted at the locations where 

6,420 single-vehicle crashes that happened on partially controlled-access roadways. For each 

crash location, 4 GSV images were collected (i.e., front, left, right, behind) with the consideration 

of crash direction. The 4 GSV images were augmented based on the proposed method in this 

study to reflect the real-world spatial relationship and transformed into 2 layers data matrixes with 

two dimensions. The high-dimensional data from GSV images were then utilized to predict severe 

crashes. A concatenated deep learning model was proposed that can use both high-dimensional 

and low-dimensional data as inputs simultaneously. For the development of the crash severity 

prediction model, crash-related data were collected and utilized in the prediction model as low-

dimensional data. A CNN model using the GSV image data only and a NN model using the crash 

data only were also developed to compare with the proposed deep learning model. The evaluation 

results show that the proposed model can improve crash severity prediction accuracy. Meanwhile, 

the results also confirm the benefits of using GSV data for traffic safety research and the 

assumption that using high-dimensional data (e.g., images) could further boost the prediction 

performance, as it usually contains more information especially for the roadway environment. 

Moreover, the modeling results are interpreted and visualized using GRAD-CAM, which highlights 

the locations that have influenced the most about the classification decisions (i.e., severe, non-

severe). This method is expected to provide road safety insights by identifying potential 

contributing factors for severe crashes. It was revealed that information from the images of the 

right side could contribute more to the occurrence of severe crashes. Moreover, features identified 

as trees and roads were found to contribute more to severe crashes. Noteworthy, the computer 

vision model used to segment GSV images has general object types. It could gain more insights 
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from the proposed analysis method if the computer vision model could be augmented and 

improved to cluster detailed object types such as medians, road shoulders, light poles, and other 

fixed objects. 

In summary, this project explored the effects of drivers’ visual environment on speeding 

crashes and the severity of crash severity. The detection results of GSV images could help 

generate the visual environments for the development of virtual simulation and driving simulator 

experiments. Besides, the effects could be identified at the pixel level, which could help design 

the test scenarios of automated vehicles and the V2X technology.   
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