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Abstract 

The advent of the Big Data era has transformed the outlook of numerous fields in 

science and engineering. The transportation arena expects to take advantage of Big 

Data through the popularization of Intelligent Transportation Systems (ITS). Judging by 

the data size, richness of information, and collection speed of data, ITS traffic detection 

systems serve as ideal sources of big traffic data. Collected from various sources, the 

data provide insight about the facilities at a microscopic level in real-time. Consequently, 

efficient integration and utilization of such data for better performance of transportation 

systems becomes a critical issue for traffic operators. In this project, different 

applications of the real-time microscopic traffic data were explored with a focus on 

operation efficiency and traffic safety. The applications range from direction 

measurement of operation efficiency and safety using the real-time traffic data to indirect 

use of the data in simulation tools. To achieve this goal, multiple tasks were set up and 

the corresponding efforts carried out. 

Currently, three major types of traffic detection technologies exist in field practice. 

In-roadway detectors are a relatively mature technology with a long history of application. 

Nevertheless, they could disrupt traffic during installation and maintenance. Over-

roadway detectors have an advantage over in-roadway detection systems because they 

are installed along the roadside and will not affect traffic during installation and 

maintenance. Off-road detectors, especially probe vehicles, are becoming popular yet 

have not been widely deployed because they require in-vehicle devices. This project 

used traffic data from two point-based over-roadway detection systems, namely the 

Microwave Vehicle Detection System (MVDS) and the Video Image Processing (VIP) 

system, and data from a segment-based probe-vehicle system, the Automatic Vehicle 

Identification (AVI) system, to conduct operation and safety evaluations. 
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Traffic safety is an important indicator of highway performance. This project 

carried out real-time safety evaluation for the studied expressways using MVDS data. To 

differentiate crash and non-crash conditions and identify the significant factors 

contributing to crash occurrence, logistic regressions were tested. Crash precursors for 

crashes on the mainline and ramps were identified. Real-time traffic flow parameters 

were found to significantly contribute to crash occurrence. The safety investigation of 

ramp crashes utilized not only real-time traffic data, but also weather data from nearby 

airports. It was found that both traffic and weather conditions would affect the crash 

likelihood in real-time. Both mainline and ramp crash prediction achieved relatively high 

accuracy, indicating the usefulness of real-time traffic data in traffic safety evaluation. 

Traffic operation was evaluated from two aspects: congestion measurement and 

travel time reliability. The AVI system showed its capability in both tasks. Travel-time-

based congestion measures using AVI data provided detailed congestion evaluation on 

spatial-temporal dimensions. By continuously monitoring the traffic conditions, traffic 

operators could have accurate information about their system at both a general and a 

detailed level and make well-informed decisions. Travel time reliability was also 

evaluated using AVI data. The strengths of AVI application in travel time reliability lie in 

that it reflects travel time in a straightforward manner and detects travel time at an 

individual vehicle level (though not a total vehicles level). Different reliability measures 

were introduced and the same conclusions were drawn. Based on performance, AVI 

data could adequately identify travel time reliability conditions on expressways. 

Traffic data can also be used in micro-simulation. Microscopic simulation allows 

traffic operators to evaluate traffic conditions or test the impact of a specific management 

strategy in a simulated environment. However, to achieve convincing results, the traffic 

input has to be as close as possible to real traffic conditions. This project incorporated 

real-time traffic data corresponding to fog conditions into the simulation to evaluate the 
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changes in traffic flow. By using real-time traffic data at short-time intervals, validation 

and calibration of the microscopic simulation model could be significantly enhanced. The 

Surrogate Safety Assessment Model (SSAM) was then introduced to evaluate traffic 

conflicts under the specific adverse weather type (fog). Through simulation, potential 

countermeasures could be proposed and their effects could be estimated without actual 

deployment of expensive devices. It was hoped that the real-time field traffic data would 

facilitate an understanding of the effects of adverse weather and other factors on driver 

behavior in the future. 

In urban areas, safety at signalized intersections is a critical issue. Drivers’ 

behavior in dilemma zones is especially worth exploration. Cellular Automaton (CA) 

models are simulation tools to simulate drivers’ behavior in dilemma zone analysis. This 

project evaluated the viability of real-time traffic data from a video processing system in 

CA simulation. The use of real-time traffic data was not common in previous studies. 

Multiple variables regarding vehicle speed, distance to intersection, relative position to 

other vehicles, and more were extracted from the video data. These data were then 

matched with drivers’ stop/go decisions at intersections. Rear-end risks and red-light-

running risks were evaluated. Appropriate countermeasures (e.g., pavement marking, 

flashing, and the combination of the two) to cope with dilemma zone problems and their 

effects were identified.  

Overall, multiple tasks in this project demonstrated the great potential to apply 

microscopic traffic data to traffic safety studies and simulation applications. 
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CHAPTER 1: Introduction 

The abundance of information is a distinguishing feature of the 21st century. 

Nearly all aspects of social activities have experienced some degree of transformation 

due to the insights introduced by this information. In the transportation arena, the rapid 

popularization of Intelligent Transportation Systems (ITS) in the past few decades has 

brought new perspectives to traffic operations and management. The ITS traffic data 

often contain microscopic traffic flow information and are collected continuously from 

different sources over a vast geographical scale. Huge in size and rich in information, 

the seemingly disorganized data have great potential for operation efficiency and traffic 

safety evaluation and improvement. 

Operation efficiency and traffic safety have long been deemed as priorities 

among highway system performance measurements. While efficiency could be 

evaluated in terms of traffic congestion and travel time reliability, safety is often improved 

by identifying how traffic flow parameters affect crash occurrence. Recently, simulations 

also serve as a cost-effective way to evaluate traffic efficiency and safety in simulated 

scenarios allowing researchers and practitioners to test proposed improvement 

strategies.  

The main objectives of this study were to explore different vehicle detection 

systems, focusing on the most widely deployed infrastructure-based sensing 

technologies. Applications of these types of data for efficiency and safety evaluation, and 

simulation, were investigated.   

To achieve the proposed objectives, several tasks were carried out.  

 Task 1: Identify and collect continuous measurements of traffic conditions at 

different levels: segment-based, point-based, and vehicle based;  

 Task 2: Validate the use of different microscopic data sources; 
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 Task 3: Measure traffic efficiency: congestion measurement and travel time 

reliability in real-time; 

 Task 4: Evaluate traffic safety: relationship between traffic flow (speed, flow, 

density, congestion) and crash occurrence, crash precursors in real-time; 

 Task 5: Simulate traffic flow under adverse weather conditions in micro-

simulation. Real-time traffic data (combined as needed with weather data) could 

be used to tune traffic flow under different conditions in micro-simulation; 

 Task 6: Investigate the use of video-based data;  

 Task 7: Develop a simulation model using video-based parameters;  

 Task 8: Use the new simulation model to investigate dilemma zone decisions at 

signalized intersections. 

Following this chapter, this report begins with a literature review on existing 

sensing technologies in Chapter 2. Chapter 3 describes the data that were collected for 

the purpose of this study (Tasks 1 and 2). Chapter 4 focuses on applications of the 

microscopic data in traffic efficiency measurement, which included congestion 

measurement and travel time reliability in real-time (Task 3). Chapter 5 demonstrates 

how these data could be used for proactive traffic safety evaluation in real-time (Task 4). 

Chapter 6 offers insights about micro-simulation utilizing the traffic data under different 

conditions (Task 5). Chapters 7 and 8 discuss the utilization of the video-based traffic 

data and develop a simulation tool to study drivers’ decision-making at dilemma zones 

near signalized intersections (Tasks 6-8). Conclusions are summarized in Chapter 9. 
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CHAPTER 2: Literature Review 

A wide variety of traffic detection technologies have been tested and applied to 

improve the performance of automatic traffic monitoring. According to Martin et al. 

(2003), state-of-the-art detection technologies fall into three categories as shown in 

Figure 2.1. in-roadway detectors, over-roadway detectors, and off-roadway technologies. 

The terms “in-roadway” and “over-roadway” are used in the Traffic Detector Handbook 

(Klein et al., 2006). In-roadway detectors are commonly known as intrusive detectors 

and over-roadway detectors are known as non-intrusive detectors. Off-roadway detector 

technologies include probe vehicles and remote sensing. Probe vehicles could be further 

broken down into GPS, cellular phone, Bluetooth, Automatic Vehicle Location (AVL), and 

Automatic Vehicle Identification (AVI) technologies. 

An in-roadway sensor is one that is embedded in the pavement of the roadway, 

embedded in the subgrade of the roadway, or taped or otherwise attached to the surface 

of the roadway (Mimbela and Klein, 2000). The most common in-roadway detector 

technologies include inductive loop detectors, weigh-in-motion sensors, magnetometers, 

tape switches, micro-loops, pneumatic road tubes, and piezoelectric cables. In-roadway 

detector technologies have been implemented since the early stage of automatic traffic 

surveillance, thus they are applications of relatively mature technologies. However, they 

have several drawbacks including disruption of traffic for installation and repair. They 

also have high failure rates in certain conditions (Martin et al., 2003), such as poor road 

surfaces and adverse weather conditions. 
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Figure 2.1 - Automatic traffic detection technologies 

 

An over-roadway sensor is one that is mounted above the roadway itself or 

alongside the roadway, offset from the nearest traffic lane by some distance. Existing 

over-roadway sensors include video image processors, microwave radar sensors, 

ultrasonic sensors, passive infrared sensors, laser radar sensors, and passive acoustic 

sensors (Mimbela and Klein, 2000). Compared with in-roadway sensors, over-roadway 

sensors have a significant advantage in that they minimize the disruption of traffic during 

installation and maintenance. 

In addition to the intrusive and non-intrusive traffic detection technologies, off-

roadway technologies are developing quickly. Probe vehicles and remote sensing are 
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currently two new sensing technologies. Probe vehicles require in-vehicle devices and 

have opened new fields for traffic researchers because they track individual vehicle 

movement. Aircraft or satellites perform remote sensing, and the technology applies 

aircraft or satellite images to analyze and extract traffic information (Martin et al., 2003). 

However, for real-time traffic monitoring its utilization is quite limited. 

Probe vehicle technologies include GPS, cellular phones, Bluetooth, AVI, and 

AVL. They collect real-time traffic data for operation monitoring, incident detection, and 

route guidance. Although probe vehicle systems require high implementation costs and 

fixed infrastructure, they have the advantages of continuous data collection and no 

disruption to traffic (Martin et al., 2003).   

Of the detector systems introduced above, three systems that served as traffic 

data sources in this research will be discussed in detail: microwave radars, AVI, and 

video image processing.   

Microwave radars are normally mounted adjacent to roadways. They are typically 

insensitive to inclement weather. In addition, they offer direct measurement of speed and 

multiple lane operation. Two types of microwave detectors exist: Doppler microwave 

detectors and Frequency-Modulated Continuous Wave (FMCW) detectors (also referred 

to as true-presence microwave detectors). Both types of detectors can detect volume, 

occupancy, classification, and speed. The true-presence vehicle detectors can detect 

stopped vehicles, whereas Doppler microwave detectors can only recognize vehicles 

above a minimum speed. 

Automatic Vehicle Identification (AVI) refers to various components and 

processes that allow for the identification of vehicles for the purposes of charging a toll 

or providing data for various traffic-management strategies. Currently, two major types of 

AVI technology are deployed: laser and Radio Frequency (RF). Laser systems utilize a 

bar-coded sticker attached to the vehicle. However, detection is sensitive to weather and 
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dirt. RF systems use a transponder attached to vehicles and tag readers to identify the 

unique tag ID for Electronic Toll Collection. Compared to other intrusive or non-intrusive 

detector systems, AVI systems have the ability to provide space mean speed information 

and travel time information (Riley, 1999). Nevertheless, the data collection capability of 

the AVI system depends on the coverage area of AVI infrastructures (Martin et al., 2003). 

Video image processing (VIP) systems normally consist of one or several video 

cameras, microprocessor-based equipment for processing the imagery, and software for 

interpreting the images and outputting traffic data (Martin et al., 2003). VIP detectors can 

monitor rich traffic information. In contrast to AVI and microwave detectors, VIP 

detectors can detect traffic on multiple lanes over a limited zone area. Passing vehicles 

in the images cause variations in the gray levels of the black-and-white pixel groups, so 

vehicle passage can be determined based on the variations. With image processing 

software, classification by length, speed, and headway, vehicle presence, volume, and 

more can be detected. Nevertheless, one limitation that could lower data quality is 

environmental factors, especially poor light conditions. 

With the fast development of traffic detection technologies, their applications in 

traffic management become a significant topic for traffic operators. Considering each 

type of traffic detection technology has a unique functionality, specific traffic 

management applications can exploit each system (Antoniou et al., 2011). Based on the 

potential applications of these detection systems, they can be classified as point, point-

to-point, and area-wide systems. 

Inductive loop detectors, microwave detectors, and video image detectors all 

belong to the point-based sensors classification since they reflect traffic conditions at the 

installed locations. The AVI system is point-to-point (segment) based. The same vehicle 

is identified at various locations, and that data is used to calculate travel time and space 

mean speed. GPS and cellular phones can be deemed area-wide (vehicle-based) 
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sensors. They collect travel information from individual vehicles continuously over a 

large area as long as the vehicles are equipped with these devices. These data 

collection technologies create new opportunities in dynamic traffic management as well 

as other aspects of traffic simulation and prediction (Antoniou et al., 2011). 

The benefits of traffic detection technologies include direct and indirect 

applications. Direct applications include congestion reduction, automatic incident 

detection (AID), and travel time estimation. Indirect applications are carried out through 

enhancement of traffic modeling in the model development, calibration and validation 

processes, and traffic simulation. 
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CHAPTER 3: Data Collection and Comparison 

This study collected traffic data from different sources. The MVDS and AVI traffic 

data were collected from the urban expressways operated by the Central Florida 

Expressway Authority (CFX). Video data were recorded at an intersection in Orlando, 

Florida. 

When CFX converted mainline toll plazas to open tolling express lanes, they 

adopted the AVI system for Electronic Toll Collection. If vehicles traveling on CFX’s 

expressways are equipped with E-PASS or SunPass, they do not have to stop or slow 

down to pay the tolls. The AVI detectors will keep records of vehicle information and 

calculate tolls according to the distance that the vehicles traveled. Although AVI 

detectors can archive traffic information, they are not designed for this objective because 

only vehicles equipped with transponders can be detected. Starting in 2012, CFX 

introduced MVDS to their expressway network. These detectors are installed specifically 

for traffic monitoring. The two systems exhibit substantial differences. However, both can 

be leveraged to provide traffic professionals with valuable traffic information. In this study, 

both types of data were collected from three expressways (SR 408, SR 417 and SR 528) 

operated by CFX, as illustrated in Figure 3.1. 
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Figure 3.1 - Urban expressway system involved in the study (CFX, 2014) 

 

3.1 AVI Traffic Data 

The AVI traffic data were collected from September 2012 to December 2014. AVI 

detectors are installed at toll plazas for Electronic Toll Collection and at other locations 

for travel time estimation. Table 3.1 summarizes the active detector numbers for each 

expressway from July 2014 to December 2014. 

 

Table 3.1 - Number of active AVI detectors 

Expressway Length Direction July August September October November December 

SR 408 
22 

miles 

EB 23 23 21 21 21 21 

WB 18 18 17 18 18 17 

SR 417 
32 

miles 

NB 13 13 14 14 14 15 

SB 17 17 17 13 13 18 

SR 528 
22 

miles 

EB 7 6 8 8 9 9 

WB 8 8 8 10 10 10 

 

 

SR 408 has the most detectors and the smallest average spacing between AVI 

detectors among the three expressways. SR 528 has relatively short AVI segments near 
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the international airport and west to SR 417. However, on the suburban segments 

leading to the coast area, the distance between adjacent AVI sensors could be greater 

than seven miles. The distance between adjacent sensors is determined on two basic 

criteria: the need for toll collection and the need for travel time estimation. In urban areas, 

the accessibility of the expressway has to accommodate the travelers’ demand of 

entering and exiting the expressways. This makes the toll collection for a relatively short 

spacing necessary on SR 408 since it travels through the downtown Orlando area. 

The raw AVI dataset records a vehicle’s encrypted ID and timestamp when the 

vehicle passes an AVI detector. By ranking a vehicle’s ID and its timestamp, the 

timestamp when two adjacent upstream and downstream detectors recorded a vehicle 

separately can be obtained. The travel time for a vehicle across a link is the timestamp 

difference. The link length is calculated based upon upstream and downstream detectors’ 

mileposts. Employing travel time and link length, a vehicle’s speed is determined using 

Equation 3.1. 

 

speed =
𝐿𝑖𝑛𝑘 𝐿𝑒𝑛𝑔𝑡ℎ

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
=

|milepostupstream−milepostdownstream|

timestampdownstream−timestampupstream
                 (3.1) 

 

Supposing speed limit is the free-flow speed, the free-flow travel time is the time 

a vehicle spent across a link at the free-flow speed. Comparing free -flow travel time with 

the timestamp difference between upstream and downstream, we can get the travel time 

index (TTI) by using Equation 3.2. 

 

TTI =
timestampdownstream−timestampupstream

𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
                               (3.2) 
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The AVI data are based on individual vehicles equipped with electronic 

transponders; therefore, the traffic count using AVI sensors is not the complete traffic 

volume. Existing studies utilizing the AVI traffic speed data have shown that, in many 

cases, the AVI data are capped at the speed limit. This might be out of safety concerns 

to discourage speeding when providing motorists with estimated travel time. However, 

uncapped speed (see Figure 3.2) could reflect real traffic conditions and is more 

desirable when focusing on exploration of AVI data performance in traffic monitoring. 

 

 

Figure 3.2 - SR 408 eastbound uncapped AVI data, December 2014 

 

3.2 MVDS Traffic Data 

This project uses MVDS data collected from July 2013 to December 2014. MVDS 

was initially introduced for traffic monitoring to CFX’s expressways in 2012. MVDS does 

not identify individual vehicles. It returns aggregated traffic flow parameters at one-
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minute intervals on each lane of the cross-section where the MVDS detector is installed. 

Archived traffic parameters by the MVDS sensors include traffic volume, time mean 

speed, lane occupancy, and traffic volume by vehicle length. 

The MVDS traffic data also includes the timestamp when the sensor is polled. It 

was mentioned above that the sensors are polled every one minute. In addition, a 

unique sensor identifier and lane identifier are contained within the data. The sensor 

identifier consists of the roadway (i.e., SR 408, SR 417, or SR 528), milepost, and 

direction. The lanes are counted from the roadway median to the outside lane and fall 

into four categories: Mainline, Ramp, Mainline TP Express, and Mainline TP Cash (as 

shown in Table 3.2). Mainline TP Express indicates express lanes at mainline toll plazas; 

vehicles equipped with tags do not need to slow down on these lanes when they pass 

the toll plazas. Mainline TP Cash specifies a tollbooth at mainline toll plazas; vehicles 

need to stop and pay tolls. On expressways, these two types of lanes are physically 

separated. 

 

Table 3.2 - MVDS on the CFX system 

Route 
Length 

(mi) 
Direction 

MVDS Detectors 

Total 

Mainline 
(including 

TP 

Express) 

TP 
Cash 

Ramp 

Distance between 
adjacent detectors 

Mean SD Min Max 

SR 408 21.4 
EB 102 55 8 39 0.38 0.18 0.1 1 

WB 102 55 8 39 0.39 0.18 0.1 1 

SR 417 31.5 
NB 93 55 7 31 0.58 0.28 0.2 1.3 

SB 94 55 7 32 0.58 0.28 0.2 1.2 

SR 528 22.4 
EB 49 26 4 19 0.84 0.79 0.1 3 

WB 51 29 4 18 0.84 0.82 0.1 3.1 

 

 

Compared with AVI traffic data, MVDS data reflect traffic states at their installed 

locations instead of at a segment. They also have several advantages over AVI data. 
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One advantage is traffic data for different types of lanes from MVDS sensors. Given that 

MVDS sensors monitor traffic conditions on each traveling lane, traffic data at toll plazas 

and on ramps can be collected. AVI data only provide traffic information of a cross-

section on the mainline. To have a general understanding about expressway 

performance, analysis of toll plazas and ramps is necessary as well. Another advantage 

is the richness of traffic information from MVDS data. The traffic count from uncapped 

AVI data is not the complete traffic volume, whereas MVDS data includes speed, 

complete traffic volume, and lane occupancy as a surrogate measure of traffic density, 

as well as the volume by vehicle lengths. 

3.3 Video Data 

The video data collection was conducted in Orlando, Florida. The studied 

intersection is located at the northwest corner of the University of Central Florida, which 

plays a major role in stimulating economic and residential development in Orlando. This 

intersection is a four-legged signalized intersection between Corporate Blvd. and Gemini 

Blvd. running east-west and Alafaya Trail running north-south (see Figure 3.3) with a 

yellow interval of 4.3 seconds and an all-red interval of 1 second. 

 

 

Figure 3.3 - Site location map (Google Maps, 2014) 

Studied 

Intersection 
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This study specifically considered the northbound approach (see Figure 3.4). 

 

 

(a) 

 

(b) 

Figure 3.4 - Studied intersection 

(a) view from the intersection and (b) view into the intersection 

 

Alafaya Trail southbound consists of five-lane divided traffic: three lanes for 

through movements, one exclusive left turn lane, and one exclusive right turn lane. 

Alafaya Trail northbound is three-lane divided traffic. Corporate Blvd. eastbound and 

Gemini Blvd. northbound are two-lane divided traffic. The existing posted speed limit on 

Alafaya Trail is 45 miles per hour (mph, see Figure 3.5). Thirty-six hours of video, which 
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includes 28 off-peak hours (1:30pm-4:30pm) and 8 peak hours (4:30pm-6:00pm), were 

filmed during the weekdays. Using Adobe Premiere Pro software to extract data from 

videos, 1292 vehicles’ behavior was recorded. This does not include vehicles forced to 

stop by the vehicle in front. Due to the small sample size of light truck vehicles, and the 

fact that their crossing behaviors at intersections were different from other vehicles 

(Elmitiny et al., 2010), data from this vehicle type were excluded from the database. 

 

 

Figure 3.5 - Video-based system for data collection 
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Eight variables were obtained from the video: 

 DISTANCE (in ft): the car’s distance from the intersection at the onset of the 

yellow indication; 

 SPEED (in mph): the car’s operating speed at the onset of the yellow indication; 

 ST_GO: the driver’s stop/go decision (stop = 0; go = 1); 

 Y_TIME (in seconds): if the car crossed the intersection, the value is the time 

elapsed from the onset of the yellow indication until the car entered the 

intersection; otherwise, the value is missing; 

 RLR: whether or not the car ran a red light (no = 0; yes = 1); 

 LD_FL: whether the car was in a leading position or a following position in the 

traffic flow (leading = 0; follow = 1); if headway was shorter than 1 s the car was 

considered following in the platoon; 

 L_POSITION: the car’s lane position (left lane = 0; middle lane = 1; right lane = 2); 

 V_TYPE: vehicle type (passenger car (PC) = 0; light truck vehicle (LTV) = 1; 

larger size vehicle (LSV) = 2). 
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CHAPTER 4: Measurement of Traffic Efficiency 

To evaluate how well the automatic traffic detection systems could reflect traffic 

efficiency, AVI and MVDS data on CFX’s expressways were implemented to efficiency 

analysis. Performance was measured from three perspectives: congestion measurement, 

queue end detection, and travel time reliability. 

4.1 Congestion Measurement 

Traffic operation on expressways focuses on providing motorists with efficient 

movement to their destinations. To achieve this goal, reducing congestion is the most 

important task. Measuring congestion accurately is a prerequisite in congestion 

management. Traditionally, transportation authorities have implemented volume-to-

capacity (V/C) ratios and level of service (LOS) as indicators of congestion intensity 

(Grant et al., 2011). Traffic demand can vary considerably in both temporal and spatial 

dimensions and roadway capacity can be reduced by incidents. In such cases, V/C 

ratios and LOS lack the capability to capture the variability of congestion. With the fast 

development of ITS technology, real-time congestion measurement is becoming an 

urgent call. On expressways, AVI traffic detection systems are employed to archive 

traffic data in a real-time manner. Congestion measures based on the AVI system were 

introduced and compared in this study. 

Congestion can be measured using three characteristics, specifically traffic 

density, travel time, and travel speed. Data from the AVI system can be used to 

calculate the travel time of vehicles on a segment. Therefore, this study measured 

congestion by travel time. Travel time index (TTI) is the commonly accepted measure for 

evaluation of traffic congestion. It is defined as the ratio of actual travel time to an ideal 

(free-flow) travel time (Cambridge Systematics Inc., 2005), as shown in Equation 4.1 
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TTI =
actual travel time

free−flow travel time
                                                         (4.1) 

 

TTI indicates the additional time spent on a trip made during peak traffic hours 

compared to an ideal trip on the same corridor. On the CFX system, free-flow travel time 

is calculated based on segment length and average speed limit. The average speed limit 

of a segment recognizes that speed limits may vary within the segment. The levels of 

congestion and the corresponding TTI for the studied expressways are listed in Table 

4.1, drawn from the Enhancing Expressway Operations Using Travel Time Performance 

Data (Griffin, 2011). 

 

Table 4.1 - Travel time index and congestion levels 

Functional 
Class 

Travel Time Index for Different Congestion Levels 

Below congestion 
threshold 

Moderate 
Congestion 

High Congestion 

Freeway Less than 1.25 1.25 – 1.99 Higher than 2.00 

 

 

4.2 Expressway Congestion Evaluation 

Two major efforts have been made to evaluate the performances of proposed 

congestion measures on the expressways. One is the evaluation of spatial-temporal 

distribution of congestion on the mainline. The other effort is to identify the ramps that 

experience congestion. The congestion conditions on SR 408 in December 2014 were 

examined and plotted. Then, the performances of different traffic detection systems were 

compared using this information. 

To measure current expressway congestion conditions, the traffic data were 

aggregated at five-minute intervals and averaged by the weekdays for each month. 

Filled contour plots were generated to illustrate the spatial-temporal properties of the 
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congestion. The TTI congestion plots shown in Figure 4.1 and Figure 4.2 are the 

distributions of congestion on SR 408 eastbound and westbound in December 2014. 

According to the figure, congestion appears on eastbound lanes during the evening peak 

hours and on westbound lanes during the morning peak hours. In addition, the 

congestion occurs only at specific locations. The segment around MP 18 going 

eastbound experiences a high level of congestion, while the segment around MP 9 going 

eastbound and the segments from MP 11 to MP 17 going westbound have moderate 

congestion. 

Mainline congestion conditions on SR 408 in December 2014 can be 

summarized based on TTI. However, it should be noticed that the congestion intensity 

changes with time. When it is approaching peak hours, the congestion intensity 

gradually increases. Once the peak time has passed, the congestion becomes less 

severe. The congested area for SR 408 is approximately from MP 09 to MP 10 and MP 

17 to MP 18 going eastbound and from MP 10 to MP 17 going westbound. It can be 

seen that the congested area on westbound lanes is much longer than that going 

eastbound. In addition, the congestion intensity going westbound is higher. The reason 

might be that westbound lanes experience congestion during morning peak hours, 

whereas eastbound experiences congestion during evening peak hours. SR 408 is an 

urban expressway that carries a large amount of commuters. As a result, the departure 

time from home to work in the morning is less flexible and is concentrated during 8:00am 

to 9:00am. In contrast, in the evening, the departure time from work to home is more 

flexible and therefore congestion is relieved to some extent. The westbound congested 

segments in the morning are toward downtown Orlando, where land use is chiefly for 

offices and businesses. In the evening, congestion is concentrated in the opposite 

direction at interchanges with two other major corridors: Interstate-4 and SR 417. 
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Figure 4.1 - Mainline weekday travel time index of SR 408 eastbound, December 

2014 

 

Figure 4.2 - Mainline weekday travel time index of SR 408 westbound, December 

2014 
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4.3 Travel Time Reliability 

Most travelers in metropolitan areas expect peak hour congestion. However, 

unexpected delays can cause severe consequences (Texas Transportation Institute, 

2006). To reduce unexpected delays, improvement of travel time reliability is necessary. 

Travel time reliability is defined as the consistency or dependability in travel times, as 

measured from day-to-day and/or across different times of the day (Texas 

Transportation Institute, 2006). 

Travel time can be measured directly or estimated indirectly. Travel time 

measurement can be based on floating car technique, GPS, or Bluetooth. However, the 

performance of in-vehicle-based travel time measurements is restricted by the sample 

size of probed vehicles. AVI technology, which is often integrated with electronic tolling, 

is another method to provide direct measurement of travel time. Although AVI can only 

detect vehicles equipped with tags, with the current relatively high adoption rate, a 

sufficient sample size can be captured by the system. Estimation of travel time varies 

from simple estimation, based on posted speed limit, to more complicated algorithms 

using point-based detector data (i.e., loop detectors, radar detectors) (Martchouk, 2009). 

Various approaches have been proposed to measure travel time reliability. They 

range from statistical range measures and buffer measures to tardy trip indicators 

(Martchouk, 2009). Statistical measures include travel window and percent variation (see 

Equations 4.2 and 4.3). 

 

Travel Window = Average Travel Time ± Standard Deviation               (4.2) 

 

Percent Variation =
Standard Deviation

Average Travel Time
× 100%                              (4.3) 
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However, travel time window and percent variation have some drawbacks, including 

understandability for a nontechnical audience. In addition, they treat early and late 

arrivals with equal weight, despite the fact that the public cares much more about late 

arrivals (Texas Transportation Institute, 2006). 

Another category of approach is buffer measures, which are an assessment of 

how much extra time needs to be allowed for uncertainty in travel conditions (Lomax et 

al., 2003). Buffer time is the difference between the 95th percentile travel time and the 

average travel time (see Equation 4.4). An interpretation of the 95th percentile is that in 

one month, a traveler could be late to work for one day out of that month. 

 

Buffer Time = 95th Percentile Travel Time − Average Travel Time           (4.4) 

 

Buffer index uses the buffer time concept. Currently two expressions about buffer index 

exist: Equation 4.5, which is used by Martchouk (2009), and Equation 4.6, in which travel 

rate (in minutes per mile) rather than travel time is used to identify an average trip 

(Lomax et al., 2003). 

 

Buffer Index = [
95th Percenteile Travel Time−Average Travel Time

Average Travel Time
] × 100%            (4.5) 

 

Buffer Index =

Average of 
All Sections

(
Using VMT to 

Weight the Section
)

 [

95th Percenteile 
Travel Rate

−Average Travel Rate

Average Travel Rate
] × 100%     (4.6) 

 

An extension of buffer index is planning time index, which is the 95th percentile travel 

time index. It could be used as a trip-planning factor for trips that require on-time arrivals 

(Lomax et al., 2003). 
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Planning Time Index =
95th  Percentile Travel Time

Travel Time Based on Free−Flow Speed
                           (4.7) 

 

Another approach, tardy trip indicators, implies the amount of late trips. On-time 

arrival rate (Equation 4.8) and misery index (Equation 4.9) can be used as tardy trip 

indicators. 

 

On − Time Arrival = 100% − (
Percent of Travel Time Greater than 

 110% of the Average Travel Time
)          (4.8) 

 

Here, as suggested by (Schrank, 2001), the 10% of average travel time is used as a 

“lateness threshold.” However, this 10% late arrival may be relatively conservative for 

some applications (Lomax et al., 2003). 

 

Misery Index =

Average of the Travel Time for 
the Longest 20% of the Trips

−Average  Travel Time for All Trips

Average Travel Time for All Trips
           (4.9) 

 

The misery index compares the worst 20% of trips against the normal conditions to show 

the negative aspect of trip reliability. Another interpretation of misery index is “how bad 

are the worst days?” 

In this project, the AVI system measured travel time directly for different 

segments on the expressways. Thus, there was no need for travel time estimation from 

point detectors. Using the travel time collected by the AVI system, travel time reliability 

was evaluated using various measures discussed above, including percent variation, 

buffer index, planning time index, and misery index. In addition, travel time reliability was 



 
 

 

24 Integration of Microscopic Big Traffic Data in Simulation-Based Safety Analysis 

investigated at different time intervals, such as weekday weekend, day of the week, 

different time of day, and 5-minute intervals. 

Figure 4.3 and Figure 4.4 show that during weekdays, the percent variation is 

significantly higher than that of weekends on the segments proven to experience 

congestion in previous sections. On segments without congestion, the percent variations 

for weekday and weekend are comparable. The figures imply that travel time reliability is 

reduced during weekdays. A potential cause of the finding might be the high traffic 

demand and congestion on weekdays. 

 

 

Figure 4.3 - Weekday and weekend percent variation on SR 408 eastbound, July 

2014 

 



 
 

 

25 Integration of Microscopic Big Traffic Data in Simulation-Based Safety Analysis 

 

Figure 4.4 - Weekday and weekend percent variation on SR 408 westbound, July 

2014 

 

Figure 4.5 and Figure 4.6 illustrate the percent variation by day of the week. 

Conclusions are consistent with the percent variation by weekday and weekend. One 

finding is that Friday has a much lower percent variation compared to Monday through 

Thursday. The difference between Friday and other weekdays could be caused by a 

variety of reasons. One possible explanation is that the traffic pattern on Friday is more 

comparable to weekends. Although Saturday and Sunday have the lowest percent 

variation (as expected based on weekend findings), the profiles of the percent variation 

of the two days is similar to that of Friday. In the future, when evaluating travel time 

reliability on different days, Friday might be considered with Saturday and Sunday. 

Regardless, whether this assumption is valid also depends on conclusions from other 

reliability measures. 
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Figure 4.5 - Day of week percent variation on SR 408 eastbound, July 2014 

 

 

Figure 4.6 - Day of week percent variation on SR 408 westbound, July 2014 
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The percent variation by different time of day implies that peak hours have 

significantly lower travel time reliability (higher percent variation). In addition, the figures 

show clearly that not both morning and evening peak hours will experience deterioration 

on the same traveling bound, affected by the traffic demand at different times of day. In 

Figure 4.7 and Figure 4.8, SR 408 eastbound has high values of percent variation during 

evening peak hours near MP 9.0 and MP 18, while westbound has higher percent 

variation from MP 11 to MP 19 during the morning peak hours. This is generally in 

agreement with the findings from congestion evaluation. 

 

 

Figure 4.7 - Time of day percent variation on SR 408 eastbound, July 2014 
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Figure 4.8 - Time of day percent variation on SR 408 westbound, July 2014 

 

The filled contour plots in Figure 4.9 and Figure 4.10 are highly comparable to 

the plots of congestion on SR 408 (Figure 4.1 and Figure 4.2). The distribution of 

percent variation for weekdays in spatial-temporal dimension evaluated at 5-minute 

intervals reveals the travel time reliability at a more detailed level. Although percent 

variation does not treat late and early arrival differently, it is straightforward and easy for 

calculation because only average speed and its standard deviation are needed. 

Consequently, for evaluation of real-time travel time reliability, percent variation serves 

as a possible candidate. 
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Figure 4.9 - Weekday percent variation evaluated at 5-min intervals on SR 408 

eastbound, July 2014 

 

Figure 4.10 - Weekday percent variation evaluated at 5-min intervals on SR 408 

westbound, July 2014 
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Travel time reliability was also evaluated using buffer measures (buffer index and 

planning time index). Results are shown in Figure 4.11 through Figure 4.20. Conclusions 

are similar to those of percent variation. While buffer index and planning time index both 

incorporate 95th percentile travel time, they are different in that buffer index uses 

average travel time and planning time index uses free-flow travel time. For real-time 

evaluation, the buffer index and planning time index have one disadvantage – they are 

based on 95th percentile travel time, which would be difficult to determine in real-time. 

The difficulty is that most traffic authorities only archive traffic data aggregated at 1-

minute or other time intervals. However, to get the 95th percentile travel time, traffic time 

for individual vehicles needs to be archived and processed in real-time. In this regard, 

traffic detection at an individual vehicle level is recommended for real-time estimation of 

travel time reliability. 

The tardy trip indicator misery index (Figure 4.21 – Figure 4.28) performs 

similarly to statistical range measures and buffer measures. To be used for travel time 

reliability in real-time, this measurement requires travel time information of individual 

vehicles to get the longest 20% of trips. 

In conclusion, the AVI system could provide data to evaluate travel time reliability. 

In this study, the AVI data used were at an individual vehicle level. However, most 

agencies do not currently archive and use AVI data at this level. In most cases, for travel 

time estimation, the AVI data are aggregated at 1-minute intervals, meaning there is only 

one reading per minute. If travel time information for each vehicle equipped with tags 

could be collected in practice, real-time calculation of 95th percentile speed and the 

longest 20% of trips is made possible, and therefore the real-time estimation of travel 

time reliability. 

 



 
 

 

31 Integration of Microscopic Big Traffic Data in Simulation-Based Safety Analysis 

 

Figure 4.11 - Weekday and weekend buffer index on SR 408 eastbound, July 2014 

 

 

Figure 4.12 - Weekday and weekend buffer index on SR 408 westbound, July 2014 



 
 

 

32 Integration of Microscopic Big Traffic Data in Simulation-Based Safety Analysis 

 

Figure 4.13 - Day of week buffer index on SR 408 eastbound, July 2014 

 

 

Figure 4.14 - Day of week buffer index on SR 408 westbound, July 2014 
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Figure 4.15 - Time of day buffer index on SR 408 eastbound, July 2014 

 

 

Figure 4.16 - Time of day buffer index on SR 408 westbound, July 2014 
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Figure 4.17 - Weekday buffer index evaluated at 5-min intervals on SR 408 

eastbound, July 2014 

 

 

Figure 4.18 - Weekday buffer index evaluated at 5-min intervals on SR 408 

westbound, July 2014 
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Figure 4.19 - Weekday planning time index evaluated at 5-min intervals on SR 408 

eastbound, July 2014 

 

 

Figure 4.20 - Weekday planning time index evaluated at 5-min intervals on SR 408 

westbound, July 2014 
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Figure 4.21 - Weekday and weekend misery index on SR 408 eastbound, July 2014 

 

 

Figure 4.22 - Weekday and weekend misery index on SR 408 westbound, July 2014 
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Figure 4.23 - Day of week misery index on SR 408 eastbound, July 2014 

 

 

Figure 4.24 - Day of week buffer index on SR 408 westbound, July 2014 
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Figure 4.25 - Time of day misery index on SR 408 eastbound, July 2014 

 

 

Figure 4.26 - Time of day misery index on SR 408 eastbound, July 2014 
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Figure 4.27 - Weekday misery index evaluated at 5-min intervals on SR 408 

eastbound, July 2014 

 

 

Figure 4.28 - Weekday misery index evaluated at 5-min intervals on SR 408 

westbound, July 2014  
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CHAPTER 5: Traffic Safety Evaluation 

In addition to traffic mobility, traffic safety is another crucial indicator of 

freeway/expressway performance. In recent decades, with the access to ITS traffic data, 

real-time safety evaluations have been widely accepted in addition to the traditional 

crash frequency studies to identify the crash precursors. Compared with traditional crash 

frequency studies, real-time safety evaluations treat individual crashes as study objects. 

By revealing the crash contributing factors, there could be possibilities for more proactive 

traffic management strategies. 

In this project, real-time safety evaluations were carried out based on the 

expressway data. The evaluations were conducted for total crashes on mainlines and 

ramps, respectively. For each mainline crash case, two upstream and two downstream 

MVDS detectors nearest to the crash were selected to represent the traffic conditions 

nearest the crash location, as shown in Figure 5.1. For each crash case, traffic data from 

these detectors were extracted from 5-10 minutes prior to the crash occurrence to 

represent the traffic conditions immediately prior to the crashes. The geometric 

characteristics at the crash locations were also included in the analysis. 

 

 

Figure 5.1 - Assignment of MVDS detectors to crash location 

 

Crash data were collected from the 18-month period of July 2013 to December 

2014. There were 1553 crashes identified on the three expressways in this period. 

However, since the MVDS underwent a system upgrade in April 2014, no traffic data 
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were available during that month. Consequently, the crash data were matched with 17-

month traffic data and geometric data. After matching the data, SR 408 had the most 

crashes matched (699 crashes), followed by SR 528 (361 crashes), and SR 417 (334 

crashes). For each matched crash case, ten non-crash cases were randomly selected 

from where no crash occurred. 

Two general analysis approaches are employed in real-time traffic safety studies: 

statistical methods and data mining based methods. Statistical methods include logistic 

regression (Hourdos et al., 2006), matched case-control logistic regression (Abdel-Aty et 

al., 2004; Abdel-Aty et al., 2005; Zheng et al., 2010), and Bayesian statistics (Abdel-Aty 

et al., 2012; Ahmed et al., 2012; Yu and Abdel-Aty, 2013). Data mining based methods 

include neural networks (Pande and Abdel-Aty, 2006), classification trees (Pande and 

Abdel-Aty, 2006), random forests (Pande et al., 2011; Ahmed and Abdel-Aty, 2012; 

Hossain and Muromachi, 2012) and support vector machines (Yu et al., 2013), among 

others. Statistical methods present the effects of variables in an interpretable way. 

However, they assume a linear relationship between the dependent and independent 

variables. In contrast, while data mining methods often make predictions with very high 

accuracy, they are questioned because the analyzing process is similar to a black box. 

A simple logistic regression model was used in this study to identify the 

contributing factors for different types of crashes. The log odds of the outcome is 

modeled as a linear combination of the predictor variables. The dichotomous responses, 

crash and non-crash, were converted into the probabilities p(y=1) and 1-p, respectively. 

The logistic regression model is found in Equation 5.1, 
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log (
𝑝

1−𝑝
) = 𝛽0 + 𝛽𝑗𝑥𝑗                                                  (5.1) 

 

where 𝛽0 is the intercept, 𝛽𝑗 is the coefficient of variable, and 𝑥𝑗 is the value of 

explanatory variable (e.g., speed, truck percentage, road surface conditions). 

 

5.1 Real-Time Safety Evaluation for Total Mainline Crashes 

For total crashes, several variables were found to significantly affect crash 

occurrence, as shown in Table 5.1. During peak hours, traffic demand was higher than 

off-peak hours. A large number of motorists traveling at the same time could increase 

crash likelihood considerably. Traffic flow parameters that contributed to crash 

occurrence included higher traffic volume per lane and greater speed differences 

between inner and outer lanes on a cross-section at U1 station (shown in Figure 5.1) 

and a higher truck percentage and congestion index at D1 station (shown in Figure 5.1). 

The higher volume per lane and congestion index implied more congested traffic 

conditions. Speed differences between lanes indicated the speed variation on a segment. 

In addition, the presence of trucks could cause higher risks for motorists. The effects of 

three geometric variables were significant as well. On the studied expressways, a cross-

section contained two to five lanes. Given the proportion of five lane segments within the 

cross-section was quite small, the effect on safety was studied together with four lane 

segments in the safety evaluation. If a cross-section had more than three lanes, there 

was a higher probability of a crash on the segment. A narrower shoulder and median 

width would also increase the probability of crash occurrence. The effects are 

straightforward for interpretation. With a wider shoulder or median width, a driver has 

more leeway to adjust their behavior and avoid a crash. 
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Table 5.1 - Parameter estimates and model fitting for total crashes 

Parameter Description Estimate 
Standard 

Error 

Wald 
Chi-

Square 

p-
value 

Intercept  -3.1420 0.1318 567.9733 <.0001 

Peak 

Peak hour indicator: 
Peak = 1: weekday 7:00 - 9:00 & 
17:00 – 19:00, 
Peak = 0: otherwise 

0.1659 0.0888 3.4933 0.0616 

U1_lanevol 
Average traffic volume by lane at 
U1 station 

0.0130 0.000891 212.6196 <.0001 

U1_spddiff 
Speed difference between the 
inner and outer lanes at U1 station 

0.0228 0.00598 14.5063 0.0001 

D1_trkpct Truck percentage at D1 station 1.2891 0.2388 29.1463 <.0001 

D1_ci Congestion index at D1 station 4.6351 0.3374 188.7165 <.0001 

Lane45 

Number of lanes on cross section 
per direction: 
Lane45 = 1: 4 or 5 lanes at 
detection location, 
Lane45 = 0: otherwise 
Base level: 2 lanes 

0.3196 0.0906 12.4456 0.0004 

Median Median width (ft) -0.00505 0.00178 8.0038 0.0047 

Shoulder 

Shoulder width: 
Shoulder = 1: shoulder width 
≥10ft, 
Shoulder = 0: shoulder with < 10ft 

-0.5613 0.0900 38.9195 <.0001 

Model Performance 

AIC 7983.006 

-2 Log L 7963.006 

ROC 0.7095 

 

 

The cross-validation method was used to validate the model of logistic regression 

for total crashes. The ROC (Receiver Operating Curve) value in this case was 0.7095, 

which indicated a decent validity of the model. The ROC profile is shown in Figure 5.2. 
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Figure 5.2 - ROC profile for total crash modeling 

  

5.2 Real-Time Safety Evaluation for Ramps 

Ramps are an important component of expressways. They connect expressways 

with service roads or other expressways. The safety of ramps is a big concern. 

Compared to mainlines, ramps generally have smaller radii and/or are steeper. The 

crash risk on ramps may be much higher than on mainlines. The occurrence of crashes 

may block ramps, so vehicles cannot exit or enter an expressway from the desired ramp. 

One effective way to improve ramp safety is to explore ramp crash precursors in real-

time to identify hazardous conditions and reduce the risk of crashes by ITS traffic control. 

In general, crash factors can be environmental, traffic, vehicle, and driver. The 

former two factors are important and are more easily collected by non-intrusive sensors 

than the latter two. Environmental factors include geometric design and weather, and 

traffic factors include volume, speed, lane occupancy, truck percentage, and more. The 

impacts of geometric design and traffic factors are universally studied. However, weather 

should also be addressed. On average, in the United States from 2002 to 2012, twenty-
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three percent (23%) of crashes were weather-related, and seventy-four percent (74%) of 

weather-related crashes happened on wet pavement (Federal Highway Administration, 

2014). Meanwhile, weather-related crashes caused 94 million to 272 million hours of 

delay each year (Goodwin, 2002). Hence, in addition to geometric design and traffic 

factors, the weather was also included in the real-time crash analysis. 

The project chose 14.2 miles of SR 408, 26.9 miles of SR 417, and 7.6 miles of 

SR 528. They were in International Airport’s (MCO) and Orlando Executive Airport’s 

(ORL) 7.0-mile coverage buffer. Within this buffer, the weather provided by the airport 

stations could highly represent weather on expressways (Ahmed et al., 2013). Four 

datasets were collected: detailed information for every crash, MVDS traffic data, ramp 

geometrics, and weather information. Detailed information is described below. 

The raw ramp crash data were obtained from Signal Four Analytics. The dataset 

contained detailed information for all reported crashes in the period from July 2013 to 

June 2014. The information included exact time of crash, crash coordinates, crash street 

and intersecting street, number of vehicles involved, type and severity of the crash, 

number of injuries and/or fatalities involved, weather conditions, road surface and light 

conditions, and more. 

The traffic flow data were provided by CFX. The traffic data (e.g., volume, speed, 

and lane occupancy), were calculated automatically every minute by MVDS. MVDS 

additionally recognized the lengths of passing vehicles and categorized them into four 

groups: vehicles less than 10 feet long belonged to group 1, 10-24 feet long to group 2, 

24.1-54 feet long to group 3, and greater than 54 feet long to group 4. The term 

“passenger cars” was used for groups 1, 2, and 3, and “trucks” for group 4. The 

extracted traffic data were collected from 5-10 minutes prior to crash. In order to reduce 

data noise, the traffic data were aggregated into 5-minute intervals. For example, if a 

crash occurred at 8:00am, the traffic data were extracted from 7:55am to 8:00am and 
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from 7:50am to 7:55am. Twenty non-crash cases were randomly chosen for each crash 

observation. At the same time, if any crash happened within two hours of the time of a 

non-crash data point, then this non-crash data point was excluded to ensure the purity of 

the non-crash traffic flow data. 

The geometric data of ramps were collected manually using ArcGIS map and the 

Roadway Characteristics Inventory (RCI). There were 141 ramps, and each ramp had 

two variables: ramp type and ramp configuration. Of the 141 ramps, 70 were off-ramps 

and 71 were diamond ramps. 

Airport weather data were collected from the National Climate Data Center 

(NCDC). The dataset included sky condition, weather type, wind direction and speed, 

pressure, humidity, temperature, visibility, and hourly precipitation. Visibility, weather 

type, and hourly precipitation were used in this study. Weather type and hourly 

precipitation were integrated into one variable called road surface condition. If hourly 

precipitation was higher than zero, or weather type contained TS (thunderstorm), RA 

(rain), or DZ (drizzle), it was assumed that the road surface condition of an observation 

was wet in the following hour. 

Integrating crash, traffic, geometric, and weather data was important work. Every 

ramp was first assigned an ID for the geometric data. Then, for every crash, its location 

in ArcGIS was identified and an ID variable (the same as the geometric data ID) was 

manually added to stand for the ramp where the crash happened. All traffic data at a 

particular ramp would have the same ID, which was the same ID as geometric and crash 

data. Based on this ID variable, crash, geometric, and traffic data were combined. The 

last step was adding weather data into the combined data. The weather data for the 

ramps was from the airport closest to the ramps. 
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After combing these four datasets, 165 crashes and 3300 non-crashes with 

complete information were filtered out. Each observation had ten variables. The 

definitions and acronyms of these variables are shown in Table 5.2. 

 

Table 5.2 - Variables considered for real-time ramp safety evaluation 

Data Symbol Description 

Traffic 
Flow 

Spd Average speed in a 5-minute interval (mile/h) 

Std_spd Standard deviation of speed in a 5-minute interval (mile/h) 

Log(Vehcnt) 
Logarithm of vehicle count in a 5-minute interval 
(veh/5minutes) 

Occ Average lane occupancy in a 5-minute interval (%) 

Std_occ Standard deviation of occupancy in a 5-minute interval (%) 

P_truck Percentage of trucks in a 5-minute interval (%) 

Ramp 
Geometrics 

Type 1 = if the ramp is an off-ramp; 0 = otherwise 
Configuration 1 = if the ramp is a diamond-ramp; 0 = otherwise 

Weather 
Visibility 

The distance at which an object or light can be clearly 
discerned (mile) 

Surface 1 = if the road surface condition is wet; 0 = otherwise 

 

 

In order to prevent high correlations between independent variables for crash 

prediction models, a Pearson correlation test was done before model building. The 

results showed that occupancy and the standard deviation of occupancy were highly 

correlated with the logarithm of vehicle count and with speed. Meanwhile, occupancy 

was also highly correlated with its standard deviation with a 0.82 correlation coefficient. 

Hence, occupancy and standard deviation of occupancy were excluded from the model 

building. Only logarithm of vehicle count, speed, speed standard deviation, and truck 

percentage were built into the model. 

Estimation results are shown in Table 5.3. Six variables were found to be 

significant in the model at the 95% confidence interval. The overall accuracies for 

training and validation were 0.761 and 0.759, respectively, with a cutoff-point of 0.035. 
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Table 5.3 - Real-time safety evaluation for ramp crashes 

Parameter Estimate 
Standard 

Error 
Wald 

Chi-Square 
p-value 

Intercept -7.2613 0.8153 79.3212 <.0001 

Log(Vehcnt) 0.8588 0.1183 52.7051 <.0001 

Spd 0.0564 0.0109 26.9808 <.0001 

P_truck -2.6582 1.2851 4.2787 0.0386 

Configuration -0.7371 0.197 14.0039 0.0002 

Visibility -0.1634 0.0291 31.4986 <.0001 

Surface 1.9536 0.2153 82.3353 <.0001 

 AUC Sensitivity Specificity Accuracy 

Training 0.850 0.727 0.762 0.761 

Validation 0.832 0.733 0.76 0.759 

 

 

The logarithm of vehicle count in 5-minute intervals was positive, indicating that a 

high volume might increase the crash risk on a ramp. When there were more vehicles, 

the crash likelihood increased since exposure was high. Meanwhile, the high volume 

also increased the interactions between vehicles. More interactions could result in more 

multi-vehicle crashes or single vehicle crashes in which a driver intended to avoid a 

multi-vehicle crash. Speed was found to be significant in the positive direction. High 

speed increased both the braking distance and the reaction distance. Hence, a vehicle 

travelling at a higher speed was more likely to have a collision with other objects. In 

addition to vehicle count and speed, truck percentage was also significant. When truck 

percentage increased by 1%, the odds ratio decreased by 93%. Truck was defined as a 

vehicle whose length was more than 40 ft. These vehicles were usually commercial 

trucks in good condition, and the truck drivers were more experienced and drove 

carefully. Hence, the higher truck percentage decreased the crash likelihood. 
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Ramp configuration was significant and negatively related to crashes. The odds 

of a crash on diamond ramps were 47.8% of that on a curved ramp. Curved ramps have 

smaller turning radii, which could lead to a loss of vehicle control and result in crashes. 

For the weather variables, both road surface condition and visibility were significant. The 

odds of a crash on a wet road surface were 7.0 times the odds on a dry road surface. 

Wet road surfaces have less friction and result in longer braking distances than on dry 

surfaces. The longer braking distance could result in a vehicle running into a vehicle 

ahead or into fixed objects. The wet road surface also could result in vehicles spinning 

out of control. Visibility was significant in the negative direction. Under poor visibility, car 

following and lane changing are much harder, so vehicles could have rear-end or 

sideswipe crashes. 

The crash hazard for ramps can be identified based on the proposed model. ITS 

can be implemented to decrease crash risk in real-time, e.g., reducing the speed limit by 

using Dynamic Message Signs (DMS). 

5.3 Conclusions 

According to the analysis, ITS traffic data have great potential for a more 

proactive safety management system. In this project, the data proved their usefulness 

for expressway mainline and ramp safety evaluations. However, beyond the scope of 

current discussion, with more traffic detectors deployed on the roadway network and 

new detection technologies, it is expected that in the future more precise monitoring from 

different data sources would better serve the traffic authorities and help improve the 

safety performance of their system. 
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CHAPTER 6: Real-Time Traffic Data in Micro-Simulation 

Fog has a significant impact on traffic safety. It reduces visibility and 

consequently affects drivers’ vision, perception, and judgments. It is necessary to study 

the relationship between fog and safety. However, because fog is not a frequent event 

and the occurrence of crashes during foggy condition is rare, collecting enough field 

samples to get valid results would take a very long time. One solution for this problem is 

simulation, which can duplicate field traffic performance and provide the safety 

performance for a specific traffic condition. Among the simulation tools, VISSIM is one of 

the most widely used. 

In this project, VISSIM simulated traffic under foggy conditions based on the data 

from MVDS and the Fog Monitor System (FMS). The input volume was divided into low, 

middle, and high levels, and speed limit had two values (50 mph or 70 mph), hence 

there were six combinations. For each combination, rear-end and lane-change conflicts 

were collected by the Surrogate Safety Assessment Model (SSAM), which was 

developed by the Federal Highway Administration (FHWA, Gettman et al., 2008). By 

comparing the number of conflicts, we could quantify the impact of certain factors, such 

as volume and speed limit, on road safety in the poor visibility area. 

For the purpose of this study, two sources of data were collected. One was fog 

data, which provided the visibility distance and other weather information. The other was 

traffic data, which collected the detailed traffic parameters of the selected road segment. 

The study area was located on Interstate Highway 4 (I-4) from milepost 19 to milepost 

23 (a 4-mile length), roughly situated between State Highway 559 and State Highway 

557. This area is surrounded by several small lakes, so the possibility of morning fog is 

high. In January 2008, about 70 vehicles were involved in a large pileup in this area, 

caused by thick morning fog combined with smoke. Four people were killed and 38 were 

injured. Given this, simulation of this area is worth it from a practical point of view. 
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6.1 Data Source 

Since fog cannot be used directly to describe weather’s effect on driving 

behaviors, visibility was taken as a surrogate parameter. To measure the value of 

visibility, the FMS was applied to the selected road segment to collect the visibility 

related parameters. Detailed information about these parameters is shown in Table 6.1. 

 
Table 6.1 - Field weather and visibility data and units 

Name Unit 

Visibility m 

Air temperature °𝐅 

Humidity % 

Barometric pressure Kpa 

Wind direction / 

Wind speed mph 

Solar radiation 𝐖/𝐦𝟐 

Dew point °𝐅 

Subsurface moisture VWC 

Rain fall inches 

 

 

There are nine FMS monitors along the 4-mile study segment, with an average 

spacing of 0.25 mile. Installation sites are shown in Figure 6.1 (Abdel-Aty et al., 2014). 
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Figure 6.1 - FMS installment locations 

 

Visibility was defined as the distance at which an object or light can be clearly 

discerned. In VISSIM, the look-ahead distance was defined as the distance at which a 

vehicle could see forward in order to react to other vehicles in front or to the side. It 

contained the maximum and the minimum look-ahead distance. Hence, the maximum 

and minimum visibilities were set as the maximum and minimum look- ahead distances 

in VISSIM. 

In order to investigate the characteristics of traffic flow at this study area, a 

microwave vehicle detector was installed on I-4. The yellow circle, shown in Figure 6.2, 

indicates its location. The detector could record eight important variables from every 

vehicle, including speed, vehicle length, classification, and lane assignment. If the value 

in the classification column was 1, it indicated the vehicle was a small vehicle; otherwise, 

the vehicle was defined as a heavy vehicle. By aggregating vehicle count in an hour and 
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percentage of heavy vehicles, a VISSIM traffic input including hourly volume and truck 

percentage was obtained. 

 

 

Figure 6.2 - Traffic flow detector location 

 

6.2 VISSIM Calibration and Validation 

There is one rest area each on eastbound and westbound, and few vehicles in 

the rest area exit to or enter from I-4. Because the traffic volume is low, exiting or 

entering should have an insignificant impact on traffic on the mainline. Only the 4-mile 

mainline, with three lanes for each direction, was built in VISSIM simulation. Its geometry 

is shown in Figure 6.3, marked in yellow. 
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Figure 6.3 - VISSIM network 

 

According to the field data, fog-related low-visibility situations mainly appeared 

between 5:00am and 10:00am. After 12:00pm, the fog disappeared, which resulted in 

better visibility for drivers, with visibility values of almost all 1.24 miles. VISSIM intended 

to simulate the traffic under foggy conditions; fog-related low-visibility data should be 

chosen. On February 4, 2014 from 7:00am to 8:00am, there was fog with maximum and 

minimum visibility of 0.17 miles and 0.09 miles, respectively. Therefore, these two values 

were put in the simulation model. The data of traffic volume, truck percentage, and 

speed taken from the same date and time were chosen for the fog condition simulation 

model’s calibration and validation. 

In order to simulate road traffic conditions, three driving behavior parameters 

were selected for model validation. These parameters were all parameters in 

Wiedemann’s 99 model, which was designed for freeway traffic. Table 6.2 shows 

detailed information for these parameters. 
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Table 6.2 - Parameter definitions in the basic model 

Symbol Name Definition Unit 

CC1 Headway time 
The distance between vehicles in seconds that 
a driver wants to maintain at a certain speed 

s 

CC2 
Following 
variation 

Restricts the longitudinal oscillation or how 
much more distance than the desired safety 
distance a driver allows before intentionally 

moving closer to the vehicle in front 

mile 

CC6 
Speed 

dependency of 
oscillation 

Indicates the impact of distance on speed 
oscillation when a vehicle is in a following 

process; a large value indicates greater speed 
oscillation with an increasing space. CC6 = 0 
means distance won’t affect speed oscillation. 

--- 

 

 

In order to find the optimal combination of these parameters and build the VISSM 

network that can best duplicate the field traffic conditions, each parameter had four 

different values. This information is shown in Table 6.3. 

 

Table 6.3 - Parameter values for calibrating the basic model 

Symbol Name Value 

CC1 Headway time 0.9 1.2 1.5 1.8 

CC2 Following variation 0.0025 0.0050 0.0075 0.0099 

CC6 Speed dependency of oscillation 0 8.00 11.44 14.00 

 

 

The four values of each parameter generated 43 = 64 combinations. Three runs 

with different random seeds for each combination were conducted in VISSIM, resulting 

in 192 runs. For each different random seed, the stochastic functions in VISSIM were 

assigned a different value sequence and the traffic flow changed. Generally, in order to 

eliminate the impact of stochastic functions on traffic and produce meaningful results, 

several runs with different random seeds are needed. The VISSIM output was based on 

the arithmetic mean of the results obtained from multiple simulation runs with different 

random seeds. 
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The field speed was compared with mean simulated speed. The results showed 

that the group “Headway time = 0.9 s, Following variation = 0.0025 miles, Speed 

dependency of oscillation = 11.44” satisfied the speed validation requirement because 

the speed difference between field speed and simulated speed was less than 5 mph at 

the 95% confidence interval. Detailed information for the speed validation is in Table 6.4. 

 

Table 6.4 - Speed validation results 

Direction Name Mean 95% Confidence Interval 

EB 

Speed in the field data (mph) 69.772 

(-0.847, -0.065) Speed in the calibration data (mph) 70.229 

Difference -0.456 

WB 

Speed in the field data (mph) 70.117 

(-1.429, -0.602) Speed in the calibration data (mph) 71.132 

Difference -1.015 

 

 

6.3 Experimental Design and Results 

The validated VISSIM network was used to test the influence of traffic volume 

and speed limit on road safety, measured by the number of conflicts. Three different 

volume levels along with two speed limits were set up in this model. The relationship 

between levels and values is shown in Table 6.5. 

 

Table 6.5 - Experimental design 

Traffic volume level Traffic volume (veh/hour) Speed limit in the fog area (mph) 

Low 4000 
50 

70 

Middle 8000 
50 

70 

High 12000 
50 

70 
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One-mile length conflict data were used for analysis, located near the center of 

the VISSIM network and not impacted by entering and exiting vehicles. Normally 

entering and exiting vehicles are not influenced by the driver parameters or by traffic 

conditions (e.g., congestion or no congestion) set in VISSIM. The location of this 

analysis area is shown in Figure 6.4 

 

 

Figure 6.4 - Analysis area 

 

Each simulation run resulted in a corresponding trajectory file. The file was then 

analyzed via SSAM to obtain conflict information, including conflict number, type, and 

location. SSAM used several parameters to measure conflicts and to describe the 

conflict locations and characteristics. The main conflict measure parameters were time-

to collision (TTC) and post encroachment time (PET). When TTC was less than 1.5 s or 

PET was less than 5.0 s, it was considered a conflict. 

In SSAM, all conflicts involved more than two vehicles and were summarized into 

the following four types: unclassified, crossing, rear-end, and lane-change. The conflict 

angle was used to classify a crash into one of the four types. A very small angle meant 

that the vehicles’ trajectories were close to each other and a potential rear-end collision 

could occur, while a large angle implied a potential right-angle or head-on collision of the 

two vehicles (Pu and Joshi, 2008). When a vehicle was approaching from the left, a 
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negative angle was recorded, whereas a positive angle was recorded when the second 

vehicle approached from the right. The conflict angles ranged from -180° to 180°.The 

conflict angles of the four conflict types are shown in Table 6.6. 

 

Table 6.6 - Conflict angles of different conflict types 

Conflict Type Conflict Angle 

Unclassified conflict No conflict angle information provided 

Crossing conflict 𝜽𝒄 ||𝜃𝑐|| > 85° 

Rear-end crash 𝜽𝒓 ||𝜃𝑟|| < 30° 

Lane-change conflict 𝜽𝒍 30° < ||𝜃𝑙|| < 85° 
 

 

Not all types of conflict were analyzed in this project. Referencing Table 6.6, the 

crossing conflict type has an angle of the two vehicles’ heading of greater than 85°. This 

is rare for field highway segments and for VISSIM simulation. In addition, it is difficult to 

analyze an unclassified conflict, and the sample size of unclassified conflicts was very 

small. Hence, crossing conflicts and unclassified conflicts were excluded. Table 6.7 

shows the number of lane-change and rear-end conflicts from the analysis area, which 

included eastbound and westbound lanes. 

 

Table 6.7 – Number of conflicts 

Volume (veh/h) Speed Limit (mph) 
Number of Conflicts  

Lane-change Rear-end Total 

4000 
50 25 3 28 

70 134 48 182 

8000 
50 104 56 160 

70 292 271 563 

12000 
50 198 131 329 

70 309 270 579 
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Generally, the total number of conflicts, both lane-change and rear-end, 

increased with traffic volume. The more vehicles in the study area, the more crashes. It 

is easy to understand. The higher volume meant higher crash exposure and more 

interactions between vehicles. 

In addition to traffic volume, speed limit was found to be a significant factor on 

number of conflicts. For the same traffic volume, there were fewer conflicts in the fog 

area when the speed limit was lower. Lower speed decreases stopping distance, which 

is the combination of braking distance and reaction distance. A crash occurs when the 

visible distance between vehicles is shorter than stopping distance. Fog decreases the 

visible distance between vehicles. If the stopping distance does not change due to fog, it 

may be longer than the visible distance and the road may have more crashes. Hence, 

lower speed limits in the fog area should be implemented. 

As Table 6.7 indicates, when the volume was low, the speed limit had more 

impact on conflict. When volume was 4000 veh/h, the total number of conflicts at 70 mph 

was 6.50 times the number at 50 mph. However, when volume was 12000 veh/h, the 

ratio was only 1.76. When volume was high, the concentration of vehicles increased and 

the distance between them decreased. The reduction of visible distance due to fog 

combined with the reduction in distance due to high volume worsened the safety 

conditions. The speed limit alone cannot improve conditions at a large magnitude. In this 

case, warning drivers to drive much more carefully than usual, or advising them to 

change route or take a break until visibility improves, may be helpful. 
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CHAPTER 7: Dilemma Zone Simulation 

At the onset of a traffic signal’s yellow indication, drivers approaching the 

intersection must make a quick decision to either stop or cross the intersection. Among 

all the intersection-related crashes, yellow-phase-related crashes caused by these 

dilemma zones are of significant concern to transportation engineers. The dilemma zone, 

which is also known as the ‘indecision period’, describes the region which begins at the 

position where most people choose to stop and ends at the position where most people 

choose to cross the intersection at the onset of the yellow indication. Using traditional 

traffic models to describe the microscopic behavior of vehicles can be a very time 

consuming and complex process. Recently, with the rapid development of computation 

technologies, many Cellular Automaton (CA) based simulation models were developed 

to improve the dilemma zone problem. 

7.1 Video Data Analysis 

The ST_GO variable describes drivers’ decisions at the onset of the yellow 

indication. “Stop” means the driver chose to stop during the yellow interval, while “go” 

means the driver decided to cross the intersection at the yellow interval. Five hundred 

and eighty-five go decisions as well as six hundred and seventy-nine stop decisions 

were observed. Both of these decisions account for about 50% of all observations. 

A logistic model was employed to analyze the importance of different 

independent variables for the drivers’ stop/go decisions (see Table 7.1). Five variables 

were considered during the variable selection, including SPEED, DISTANCE, LD_FL, 

L_POSITION and V_TYPE. The variable definitions were explained in section 3.3. 
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Table 7.1 - Independent variables for the stop/go decision 

Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square 

SPEED 0.2118 0.0183 134.302 <.0001 

DISTANCE -0.0246 0.00145 286.449 <.0001 

LD_FL 1.0327 0.1622 40.5204 <.0001 

L_POSITION 0.0201 0.0991 0.0413 0.8389 

V_TYPE 0.2209 0.1577 1.9624 0.1613 

 

 

According to the results of the logistic regression analysis, the SPEED, 

DISTANCE, and LD_FL variables had a significant impact on drivers’ stop/go decisions 

at the 0.05 significance level; the other two variables (L_POSITION & V_TYPE) did not 

have significant influence on drivers’ stop/go decisions. Thus, three significant variables 

(SPEED, DISTANCE, and LD_FL) were chosen to be the main factors for predicting 

drivers’ decisions. The results were consistent with the results of the previous study 

(Elmitiny et al., 2010). 

7.1.1 Speed Variable 

The speed limit at the north approach was 45 mph. The mean speed was 48.2 

mph, which was slightly higher than the speed limit and lower than the lead vehicles’ 

mean speed of 49.0 mph. The range of the operating speed was 25 mph to 63 mph, and 

the standard deviation of the speed was 5.0 mph. Most of the operating speeds of the 

vehicles were at the 45 mph to 55 mph interval, which accounted for 73.2% of the 

observations (see Figure 7.1). The leading vehicle speeds followed a normal distribution 

~N(49.5, 4.92), which is considered the expected speed distribution for leading vehicles 

in this simulation research. 
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Figure 7.1 - Number of observations in different speed intervals 

 

The mean operating speed of vehicles that made go decisions (M = 49.93, SD = 4.99) 

was statistically higher (p = 0.000) than the mean operating speed of vehicles that made 

stop decisions (M = 47.79, SD = 4.83). 

In this study, the speed variable was divided into 3 groups (mph): Group 1 [0, 45], 

Group 2 [45, 53], and Group 3 [53, 66]. Table 7.2 lists the descriptive statistics of drivers’ 

stop/go decisions at the onset of the yellow signal by speed factor. Statistical results 

showed that people who drove in different speed groups made stop/go decisions 

differently (χ
3,1264

= 407,173, p = 0.000). With an increase in speed, the probability that 

the driver chose to stop also increased. 
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Table 7.2 - Descriptive statistics of stop/go decision by speed factor 

Level Statistics 
Stop/Go Decision 

Stop Go Total 

0 - <45 

Count 158 78 236 

% Within SPEED 66.95 33.05 100.00 

% Within ST_GO 23.27 13.33 18.67 

45 - <53 

Count 456 369 825 

% Within SPEED 55.27 44.73 100.00 

% Within ST_GO 67.16 63.08 65.27 

53 - <66 

Count 65 138 203 

% Within SPEED 32.02 67.98 100.00 

% Within ST_GO 9.57 23.59 16.06 

Total 

Count 679 585 1264 

% Within SPEED 53.72 46.28 100.00 

% Within ST_GO 100.00 100.00 100.00 

 

 

In Group 1, only 33.05% drivers chose to go. The percentage increased to 44.72 

when the driver traveled at 45 mph to 53 mph. When the vehicle’s speed was 53 mph to 

66 mph, the probability to go was 67.49%, which was significantly higher than the 

probabilities of Group 1 and Group 2. Regardless of the distance factor and other factors, 

about 50% of the drivers who drove at the speed of 45 mph to 53mph chose to stop. 

7.1.2 Distance Variable 

The mean distance of the vehicles to the stop line was 319.3 ft at the beginning 

of the yellow phases with a standard deviation of 80.2 ft. The minimum distance was 

160.0 ft and the maximum speed was 480.0 ft. As can be seen in Figure 7.2, most of the 

observations were in the 200 ft to 400 ft distance region. 

The distance to the stop line had a negative effect on the percentage of drivers 

who decided to cross the intersection. About 90% drivers chose to go if they were within 

220 ft of the stop line. Furthermore, when the distance was more than 400 ft, the 

probability dropped to below 10% (see Figure 7.3). 
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Figure 7.2 - Number of observations in different distance intervals 

 

 

Figure 7.3 - Stop/go decisions with different distances to the stop line 

 

The vehicles’ distance to the stop line was divided into 4 groups (ft): Group 1 [0, 

280], Group 2 [280, 390], Group 3 [390, 430], and Group 4 [430, 480]. Table 7.3 lists the 

descriptive statistics of drivers’ stop/go decisions at the onset of the yellow signal by 

distance factor. The statistical test demonstrated a significant difference for the different 

speed groups (𝜒2,1264 = 55.863, p = 0.000). In Group 1, most of the drivers chose to 

cross the intersection instead of stop. The number dropped significantly in Group 2, in 
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which only about 40% of drivers decided to go. The go percentage of drivers who were 

more than 390 ft away from the stop line was below 10%. The trend is logical in that the 

driver was more likely to cross if s/he was closer to the stop line at the onset of the 

yellow signal. 

 

Table 7.3 - Descriptive statistics of stop/go decision by distance factor 

Level Statistics 
Stop/Go Decision 

Stop Go Total 

0 - <280 

Count 75 349 424 

% Within DISTANCE 17.69 82.31 100.00 

% Within ST_GO 11.05 59.66 33.54 

280 - <390 

Count 348 217 565 

% Within DISTANCE 61.59 38.41 100.00 

% Within ST_GO 51.25 37.09 44.70 

390 - <430 

Count 120 11 131 

% Within DISTANCE 91.60 8.40 100.00 

% Within ST_GO 17.67 1.88 10.36 

430 - <480 

Count 136 8 144 

% Within DISTANCE 94.44 5.56 100.00 

% Within ST_GO 20.03 1.37 11.39 

Total 

Count 679 585 1264 

% Within DISTANCE 53.72 46.28 100.00 

% Within ST_GO 100.00 100.00 100.00 

 

 

7.1.3 LD_FL Variable 

Driver behavior of the leading and following vehicles was different. Hurwitz (2009) 

analyzed driver responses and pointed out the difference between lead and follow 

vehicles. During the data collection, 565 leading vehicles and 699 following vehicles 

were recorded. 

Table 7.4 lists the descriptive statistics of drivers’ stop/go decisions at the onset 

of the yellow signal by LD_FL factor. The position in platoons also had a significant 

effect on driver behavior (𝜒1,1264 = 93.104, p = 0.000). Table 7.4 also indicates that the 
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following vehicles were more prone to cross the intersection compared with the leading 

vehicles. 

 

Table 7.4 - Descriptive statistics of stop/go decision by LD_FL factor 

Level Statistics 
Stop/Go Decision 

Stop Go Total 

Lead 

Count 388 176 564 

% Within LD_FL 68.79 31.21 100.00 

% Within ST_GO 57.14 30.09 44.62 

Follow 

Count 291 409 700 

% Within LD_FL 41.57 58.43 100.00 

% Within ST_GO 42.86 69.91 55.38 

Total 

Count 679 585 1264 

% Within LD_FL 53.72 46.28 100.00 

% Within ST_GO 100.00 100.00 100.00 

 

 

The vehicle speeds at different positions were significantly different. The mean 

speed of leading vehicles (M = 49.52, SD = 4.93) was statistically higher than the 

following vehicles (M = 48.19, SD = 5.01) with p = 0.000. 

7.1.4 Other Factors 

If the vehicle chose to enter the intersection at the onset of the yellow indication, 

the time elapsed from the onset of the yellow until the car entered the intersection was 

recorded (Y_TIME). The mean time was 3.9 seconds with a standard deviation of 0.8 

seconds. The minimum time was 2.1 seconds, while the maximum time was 7.2 seconds. 

There were 538 light trucks and 726 passenger cars observed during the data 

collection (V_TYPE, see Figure 7.4). The statistical analysis did not show a significant 

difference between passenger cars and light truck vehicles (𝜒1,1264 = 1.576, p = 0.209). 
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Figure 7.4 - Number of observations by different types of vehicles 

 

The mean speed of passenger cars was 49.0 mph and the mean speed of light 

trucks was 48.4 mph (Figure 7.5). A significant difference was found at the 0.05 

significance level (p = 0.031). 

 

 

Figure 7.5 - Mean speed by different vehicle types 

 

There were three lanes at the studied approach (L_Position). The middle lane 

had the highest mean speed, while the left lane had the lowest mean speed. However, 

the right lane had the lowest standard deviation of the operating speed (see Table 7.5). 
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Table 7.5 - Speed by different lane position 

 
Left Lane Middle Lane Right Lane 

Mean (mph) 47.59 49.77 49.07 

Standard Deviation (mph) 5.28 4.80 4.63 

 

 

Table 7.6 shows the contingency table of different lane positions. There was no 

significant difference of the drivers’ stop/go decisions among vehicles in different lanes 

(𝜒2,1264 = 1.287, p = 0.525). 

 

Table 7.6 - Contingency table of stop/go decisions by different lane positions 

 Go Stop 

Left Lane 202 255 

Middle Lane 215 235 

Right Lane 168 189 

 

 

Typically, there are two types of red-light running violations (RLR, Federal 

Highway Administration). The first type of RLR, which is referred to as the “permissive 

yellow” rule, means the driver can enter the intersection legally during the yellow interval. 

The second type is called the “restrictive yellow” rule and forbids the driver to enter or be 

in the intersection during the red interval. The first type of rule is more common in the 

United States. 

Two hundred and seventeen red-light running violations were observed during 

the data collection. Table 7.7 shows the descriptive statistics of RLR violations. The 

speed Group 2, distance Group 2, following vehicles, and vehicles in the right lane had a 

relatively higher percentage of RLR violations. Most of the vehicles that had RLR 

violations needed about 4 to 5 seconds to cross the intersection at the onset of the 
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yellow indication, which indicated drivers were more prone to make false stop/go 

decisions when they had 4 to 5 seconds elapsed time to enter the intersection. 

 

Table 7.7 - Descriptive statistics of RLR violations by different factors 

Factor 
 

Statistics RLR 

Speed Group 

0 - <45 
Count 35 

Percentage (%) 16.1 

45 - <53 
Count 129 

Percentage (%) 58.9 

53 - <66 
Count 53 

Percentage (%) 24.4 

Distance Group 

0 - <280 
Count 39 

Percentage (%) 18.0 

280 - <390 
Count 160 

Percentage (%) 73.7 

390 - <430 
Count 10 

Percentage (%) 4.6 

430 - <480 
Count 8 

Percentage (%) 3.7 

Lead/Follow 

Lead 
Count 52 

Percentage (%) 24.0 

Follow 
Count 165 

Percentage (%) 76.0 

Lane Position 

Left Lane 
Count 71 

Percentage (%) 32.7 

Middle Lane 
Count 88 

Percentage (%) 40.6 

Right Lane 
Count 58 

Percentage (%) 26.7 

Vehicle Type 

Passenger Car 
Count 124 

Percentage (%) 57.1 

Light Truck 
Count 93 

Percentage (%) 42.9 

Elapsed Time 

>4-5 
Count 163 

Percentage (%) 75.1 

>5-6 
Count 52 

Percentage (%) 24.0 

>6-7 
Count 2 

Percentage (%) 0.9 
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Table 7.8 illustrates the logistic regression analysis for the RLR violations. Five 

factors were considered. Three factors (lead/follow, speed, and distance) showed a 

significant impact on the presence of RLR violations. Distance had the highest impact on 

the presence of RLR violations, while the lead or follow position had the least impact. 

The vehicles’ lane position and vehicle type did not show a significant relationship with 

the presence of RLR violations. The parameter estimates indicated that follow vehicles 

were more prone to have RLR violations. In addition, distance had a negative effect on 

reducing RLR violations, while speed had a positive effect on reducing RLR violations. 

Having compared the RLR violations of the leading vehicles and following vehicles, a 

statistically significant difference was observed (𝜒1,1264 = 45.239, p = 0.000), indicating 

that following vehicles were more prone to have RLR violations than the leading vehicles.  

 

Table 7.8 - Parameter estimates of the logistic model for RLR violations 

Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square 

SPEED 0.0578 0.0164 12.4733 0.0004 

DISTANCE 0.0033 0.0010 10.2341 0.0014 

LD_FL 1.3737 0.1836 55.9846 0.0000 

L_POSITION 0.0486 0.0980 0.2453 0.6204 

V_TYPE 0.0527 0.1558 0.1143 0.7353 

 

 

The distance interval of 340 ft to 370 ft had the most RLR violations. Nearly 60 

red-light running violations were observed in that distance region. The number of RLR 

violations showed an increasing trend in the distance interval of 220 ft to 370 ft, and 

showed a decreasing trend when the distance to the stop line was larger than 370 ft 

away from the stop line (Figure 7.6). However, lane position did not make a significant 

difference on RLR violations (𝜒2,1264 = 2.873, p = 0.238). 
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Figure 7.6 - Distribution of RLR violations by distance interval 

 

The RLR vehicles (M = 49.67, SD = 5.42) had a higher mean speed (p = 0.008) 

than the vehicles without RLR violations (M = 48.60, SD = 4.91). The results indicated 

that drivers with an RLR violation could be more aggressive with speed than other 

drivers (see Figure 7.7). There was a significant difference between the lead vehicles 

and the following vehicles (𝜒1,1264 = 32.532, p < 0.001) when the presence of RLR 

violations was compared with the different positions in a traffic platoon. 

Figure 7.8 illustrates the elapsed time and the distance to the stop line of the 

vehicles that had RLR violations. Referencing Figure 7.8, it can be observed that most of 

the violations occurred at 4 s to 6 s elapsed time to enter the intersection and 250 ft to 

370 ft away from the stop line. The results were consistent with previous studies 

(Bonneson et al., 2002). 
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Figure 7.7 - Mean speed by presence of RLR violations 

 

 

Figure 7.8 - Red-light running violations 

 

7.2 Stop/Go Decision Rules 

In statistics, a logistic regression is a type of statistical classification model to 

predict a binary or categorical dependent variable based on one or more independent 

variables. A logistic regression analysis can be employed to describe the relationship 
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between explanatory variables and a response variable. Previous studies have 

appropriately applied logistic regression analyses to test the significance of observable 

factors and drivers’ characteristics and grouped drivers into different categories 

(Papaioannou, 2007). 

A binary logistic regression is appropriate to use to explain drivers’ stop/go 

decisions as a function of several factors. A logistic model can be used to predict driver 

behavior. Three factors, which included speed group, distance group, and lead/follow 

position, were used as variables in the logistic regression analysis to predict drivers’ 

stop/go decisions. 

The probability that a driver will decide to cross the intersection was modeled as 

a logistic distribution in Equation 7.1, where g(x) = 0 for stopping and  g(x) = 1 for 

crossing. 

 

π(x) =
eg(x)

1+eg(x)                                                      (7.1) 

 

The logit of the logistic regression model is given by Equation 7.2. 

 

g(x) = ln
π(x)

1−π(x)
=𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3+. … . . +𝛽𝑛𝑥𝑛              (7.2) 

 

Statistical analysis was performed using SAS and hypothesis testing was based 

on a 0.05 significance level (see Table 7.9). The logistic model was found to be 

appropriate for the data (Hosmer-Lemeshow goodness of fit  χ2 = 2.7349, df = 8, p = 

0.9499). The ROC area of 0.874 indicated that 87.4% of (go, stop) decision pairs were 

classified correctly by the model, which meant that predictive accuracy was good. The 

odds ratio of the lead/follow vehicles meant the odds of go decisions for follow vehicles 
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were 2.547 times the odds of the go decisions for lead vehicles. Meanwhile, referencing 

Table 7.9, odds ratios for distance Group 2 and Group 3 relative to distance Group 1 

were 4.479 and 26.629, respectively. Further, the odds of go decisions for speed Group 

2, speed Group 3, and speed Group 4 were 0.090, 0.011, and 0.005 times the odds of 

go decisions for speed Group 1, respectively. 

Assuming that the speed of a vehicle was 45 mph to 53 mph (Group 2), the 

probability of the lead vehicle driver choosing to go was always lower than the following 

vehicle, and dropped more quickly than the follow group with increased distance, as 

Table 7.9 demonstrates. When the lead position car was more than 430 ft from the stop 

line, the probability of the driver choosing to go was only about 10%. 

 

Table 7.9 - Model estimation and odds ratios 

Parameter Estimate 
Odds 
Ratio 

95% Wald Confidence 
Limits 

Wald 
Chi-

Square 

Pr > Chi-
Square 

Follow vs. Lead 0.9458 2.547 1.870 3.469 35.8336 <.0001 

Speed Group 

2 vs. 1 1.4994 4.479 2.974 6.746 51.4817 <.0001 

3 vs. 1 3.2820 26.629 14.837 47.793 120.9566 <.0001 

Distance Group 

2 vs. 1 -2.4108 0.090 0.063 0.128 174.7836 <.0001 

3 vs. 1 -4.5557 0.011 0.005 0.022 141.3785 <.0001 

4 vs. 1 -5.2498 0.005 0.002 0.013 122.3220 <.0001 

 

 

Figure 7.9 shows the go probability for the following vehicle in different speed 

and distance groups. The driver preferred to go when s/he traveled at a higher speed. 

Even if the car was only 390 ft away from the stop line, the relative probability for 

vehicles below 45 mph was only near 20%. Vehicles in the following position in the 

platoon were more prone to go compared to the leading vehicles. Meanwhile, drivers 

who were in speed Group 1 were prone to choose to stop if s/he was more than 280 ft 
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away from the stop line. If the vehicles were in distance Group 4, the drivers were prone 

to stop no matter how fast the vehicle was traveling (Figure 7.9 (b)). 

 

 

(a) 

 

(b) 

Figure 7.9 - Drivers’ stop/go decisions 
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7.3  Cellular Automaton Model 

Previously, microscopic simulation of driver behavior was very complex and time 

consuming. With the rapid development of computer technology, a number of simulation 

systems have been developed, including different types of Cellular Automaton (CA) 

models. Due to characteristics of the CA model, it was widely used for traffic flow 

simulation once it was introduce to the traffic field. 

7.3.1 Simulation Environment 

During the simulation, the lane was composed of cells that could be empty or 

occupied by one car. Each cell corresponded to 1.5 m and each car occupied 5 cells 

(standard value in CA models). The simulation environment was set up as an open 

boundary one-dimensional lattice. 

7.3.2 Model Parameters and Variables 

A series of parameters were defined in the CA model as shown in  

Table 7.10. Some variables were from the literature, and some variables were 

calibrated by the field data. The length of the road was set as 5000 cells, or 7500 m. The 

number of time steps was indicated by T, with 1 time step representing 1 second during 

the simulation. The simulation covered 1500 seconds (time steps). The maximum 

acceleration was 1.5 m/s2 (1 cell/s2), and the maximum deceleration was 3 m/s2 (2 

cell/s2). The initial operating speed of the vehicles followed a normal distribution, which 

was calibrated by the field data. The expected mean speed of the leading vehicles was 

set as the input. 

 

Table 7.10 - CA model parameters 

Parameter Description Value 

L Road length 5000 (cells) 

T Number of time steps 1500 (s) 

Acc Maximum acceleration 1 (cell/s2) 

Dec Maximum deceleration 2 (cell/s2) 
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𝑣𝑖𝑛𝑡 Initial speed of vehicle ~ Normal(49.5, 4.92) 

 

7.3.3 Driver Behavior 

7.3.3.1 General Rules 

Response time referred to the time interval between the signal changing and the 

brake (or acceleration) response. Wortman and Matthias (1983) found that the average 

reaction time was between 1.09 s and 1.55 s, which was consistent with the results of 

other studies (Chang et al., 1985; Newton et al., 1997; Gates et al., 2007). The Institute 

of Transportation Engineers (1989) recommended 1.0 second as the brake-response 

time for yellow intervals. In the simulation, the default value for the yellow interval 

reaction time was 1.0 second. 

Drivers’ stop/go decisions were based on the probabilities calculated by the 

logistic regression. The sensitivity and specificity reached the same value when the 

probability was equal to 0.48 (Figure 7.10). Therefore, if the probability value was larger 

than 0.48, the driver chose to go. Otherwise, the driver chose to stop. Other driver 

behavior rules followed the CA model rules (Jia et al., 2007; Ding et al., 2014). 

 

 

Figure 7.10 - Relationship between sensitivity and specificity in the logistic model 
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7.3.3.2 Randomization 

For drivers that did not have an obvious speed up or slow down behavior, it was 

assumed that the slowing was caused by the randomization. The acceleration of the 

non-stopping cars revealed a normal distribution. Ding et al. (2014) calibrated the 

randomization probability at the intersection at p = 0.16. 

7.3.3.3 Updating Rules 

The position and velocity of the vehicles were updated according to the following 

transition rules: 

 Step1 - Acceleration: If 𝑣𝑛 < 𝑣𝑚𝑎𝑥, the speed is advanced by one, unless the 

distance to the next vehicle ahead is smaller than 𝑣𝑛 + 1. 

 

𝑣𝑛→min(𝑣𝑛+1,𝑣𝑚𝑎𝑥)                                                        (7.3) 

 

 Step 2 - Deceleration: If the 𝑛𝑡ℎ vehicle’s speed will exceed the front vehicle at 

the next time step (∆t), the velocity of the 𝑛𝑡ℎ vehicle is reduced by 1. 

 

𝑣𝑛 → min ( 𝑣𝑛, 𝑑𝑛/∆𝑡 − 1)                                                 (7.4) 

 

 Step 3: The velocity of each vehicle (if 𝑣𝑛 > 0) is decreased by one with 

probability p. 

 

𝑣𝑛 → (𝑣𝑛 − 1,0)                                                                (7.5) 
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 Step 4: Update vehicle movement. 

 

𝑥𝑛 → 𝑥𝑛 + 𝑣𝑛 × ∆𝑡                                                            (7.6) 

 

7.3.4 Signal Timing 

A fixed time signal control program was set at the intersection. To simplify the 

simulation process, the intersection signal was set as a fixed timing program with a 

relatively short circle of 60 s that included a 25 s green phase, a 4 s yellow phase, and a 

31 s red phase. In the fixed signal time program, when a signal changed from green to 

yellow, drivers made stop/go decision and behaved differently under different 

countermeasures. 

7.3.5 Risky Situations  

Two types of dangerous situations were considered during the simulation: rear-

end crashes and red-light running violations. There were no rear-end crashes during the 

simulation based on the CA model, thus a concept of risky situation was proposed to 

describe the rear-end crashes caused by the behavior of the drivers (see Figure 7.11). 

Sometimes, the drivers’ behaviors were caused by the false expectations of other drivers. 

Risky situations were divided into two types, those caused by a stopped car and those 

caused by non-stopped cars. A criterion of “slam on the brake” was defined to describe 

situations in which the former car encountered emergencies (such as the signal turning 

from green to yellow) and a risky situation presented because of the inefficient response 

time. Meanwhile, the presence of RLR violations was also caused by the false decisions 

of the drivers. Thus, another criterion that described the percentage of drivers’ false go 

decisions was proposed to compare the potential RLR risk. 
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Figure 7.11 - Risky situations 

 

Four risky situations were analyzed: slam on the brake, situations caused by a 

stopped car, situations caused by non-stopped cars, and RLR rate. 

 Slam on the brake (BRAKE) 

 

(𝑎1)𝑣𝑛
𝑡 − 𝑣𝑛

𝑡+1 > 2                                                        (7.7), 

 

 RS caused by stopped cars (RS1) 

 

(𝑎1)𝑣𝑛
𝑡 − 𝑣𝑛

𝑡+1 > 2𝑎𝑛𝑑 𝑑𝑛
𝑡+1 = 0, (𝑏1)𝑣𝑛+1

𝑡 > 0, (𝑐1) 𝑣𝑛+1
𝑡+1 = 0             (7.8), 

 

 RS caused by non-stopped cars (RS2) 

 

(𝑎1)𝑣𝑛
𝑡 − 𝑣𝑛

𝑡+1 > 2𝑎𝑛𝑑 𝑑𝑛
𝑡+1 = 0, (𝑏1)𝑣𝑛+1

𝑡 > 0, (𝑐1) 𝑣𝑛+1
𝑡+1 ≠ 0             (7.9), 

 

 False go decision (RLR) 

 

𝑣𝑛
𝑡 ∗ 𝑡𝑌 < xn

t                                                               (7.10), 

 

where 𝑡𝑌 is the yellow interval and xn
t  is the gap of the vehicle to the vehicle in front. 
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The probabilities of occurrence of rear-end crashes caused by stopped cars, 

non-stopped cars, or slam on the brake were denoted as 𝑃 − 𝑅𝑆1, 𝑃 − 𝑅𝑆2 , and 𝑃 −

𝐵𝑅𝐴𝐾𝐸, respectively. The probability of occurrence of RLR was 𝑃 − 𝑅𝐿𝑅. 

7.3.6 Simulation Output 

The simulation was conducted based on C#. The output contained six 

documents. Brake1 contained data of emergency braking (BRAKE). Each number in the 

Brake1 document represented the  𝑃 − 𝐵𝑅𝐴𝐾𝐸 during each simulation process (see 

Figure 7.12). 

 

 

Figure 7.12 - Output of Brake1 document 

 

 

Figure 7.13 - Output of DSZ1 document 

 

DSZ1 contained data of risky situations caused by stopped cars (RS1). Each number in 

the DSZ1 document represented the  𝑃 − 𝑅𝑆1 during each simulation process (see 

Figure 7.13). DSZ2 contained data of risky situations caused by non-stopped cars (RS2). 

Each number in the DSZ2 document represented the  𝑃 − 𝑅𝑆2 during each simulation 

process (see Figure 7.14). 

 

 

Figure 7.14 - Output of DSZ2 document 
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The tl1 document contained the spatial and temporal information of RS1 and RS2 (see 

Figure 7.15). The first line represented the time when the RS1 or RS2 happened, the 

second line represented the location of the risky situation, the third line recorded in 

which simulation process the risky situation presented, and the last line showed the 

expected speed of the vehicles. 

 

 

Figure 7.15 - Output of tl1 document 

 

The tl2 document contained the spatial and temporal information of emergency brake 

(see Figure 7.16). The first line represented the time when the emergency brake 

happened, the second line represented the location of the risky situation, the third line 

recorded in which simulation process the risky situation presented, and the last line 

showed the expected speed of the vehicles. 

 

 

Figure 7.16 - Output of tl2 document 

 

The stgo-error document contained the information about drivers’ false decisions. Each 

number represented the  𝑃 − 𝑅𝐿𝑅 during each simulation process (see Figure 7.17). 

 

 

Figure 7.17 - Output of stgo-error document  
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CHAPTER 8: Comparative Analysis of Different Dilemma Zone Countermeasures 

8.1  Typical Intersection 

A typical simulation will follow the general rules described in Chapter 7.3.3.1. The 

spatial and temporal information of the risky situations when the expected mean speed 

of the leading vehicles followed a normal distribution ~N(50, 5) is depicted in Figure 8.1. 

Figure 8.1(a) shows the RS1 and RS2 risky situations, which represented the possible 

rear-end crashes. Most of this type of risky situation was present at the end of yellow 

phases and the beginning of red phases. One possible reason for these situations was 

the difference of the driver behavior during the yellow interval and their false judgments 

of other drivers’ decisions (Yan et al., 2005). Meanwhile, most of the risky situations 

were located 10 ft to 45 ft away from the intersection. Figure 8.1(b) describes the 

distribution of the presence of the emergency brake. Different from rear-end crash risky 

situations, most of this type of risky situation was present closer to the intersection and 

began to present soon after the onset of the yellow indication. Thus, most risky 

situations happened at the beginning of the yellow indication until 10 seconds after the 

onset of the red indication, and were located at 7.5 m (5 cells) to 60 m (40 cells) away 

from the stop line. 
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     (a) 

 

     (b) 

Figure 8.1 - Spatial and temporal distribution of risky situations at the typical 

intersection when the expected speed of lead vehicles followed ~N(50, 5) 

(a) RS1 and RS2 and (b) emergency brake 

 

When increasing the standard deviation of the leading vehicles, the risk 

probabilities also showed an increasing trend, especially when the standard deviation 

increased from 2 mph to 5 mph. If the standard deviation had already increased to 5 
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mph, the probability of the risky situations was more sensitive to the increase of the 

expected mean speed (Table 8.1). 

 

Table 8.1 - Impact of standard deviation of leading vehicles on risky situations at 

the typical intersection 

Speed Distribution 
Risky Situation (*10-5) 

(50, 2) (50, 5) (50, 10) 

P-BRAKE 9.32 64.41 67.58 

P-RS1 6.44 43.97 43.09 

P-RS2 0.31 2.88 2.75 

 

 

Table 8.2 shows the potential RLR violations by different expected mean speeds 

of the leading vehicles at the typical intersection. When the expected mean speed was 

lower than 50 mph, there was an increasing trend in the percentage of false decisions 

with the increase in speed. If the expected mean speed increased from 50 mph to 60 

mph, the percentage was reduced. As demonstrated in Chapter 7.2, vehicles traveling at 

a speed of about 50 mph were more prone to have a false go decision. Thus, the 

simulation scenarios with more vehicles driving at this operating speed had a higher 

percentage of false decisions, which led to high P-RLR. 

 

Table 8.2 - RLR risk probabilities by different expected mean speed of leading 

vehicles at the typical intersection 

Speed Distribution (30, 5) (40, 5) (50, 5) (60, 5) (50, 2) (50, 10) 

RLR Risk Probability (*10-4) 37 56 166 52 323 134 
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8.2  Intersection with Flashing Green Signal 

8.2.1 Scenario Construction 

In some countries, flashing green signals are implemented at the end of green 

phases to give drivers advanced warning of the upcoming yellow indication; these are 

still part of the green phases. Newton et al. (1997) found that about 80% of drivers made 

acceleration or deceleration decisions during the flashing phases in the Change 

Anticipation System (TLCAS) program. Many of them decelerated, but some of the 

drivers chose to accelerate. The TLCAS maximum deceleration value (2.5 m/s2) was 

significantly different from the regular program (3.1 m/s2) that did not include flashing 

indication phases. The maximum acceleration was 1.6 m/s2 in the TLCAS program in 

contrast to 2.0 m/s2 in the regular program. As for reaction time, the mean value for the 

TLCAS was 2.05 s, which was much larger than the regular program. Based on results 

from the TLCAS program, the simulation process of an intersection with flashing green 

signals is shown in Figure 8.2. 

Four seconds before the onset of the yellow indication, the flashing green signal 

began. To simplify the simulation, 75% of the drivers decelerated at 2.0 m/s2, 5% of the 

drivers accelerated at 1.0 m/s2, and the other 20% of drivers approached the intersection 

with the same speed. The default value for the flashing green reaction time in this 

simulation was 2 seconds. The rules of driver behavior after the onset of the yellow 

indication were the same as the typical intersection (section 8.1) 
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Onset of 
flashing green 

signal

Decelerate
(p=75%)

Onset of 
yellow signal

Make decisions based on 
results of 

logistic regression

Keep speed
(p=20%)

Accelerate
(p=5%)

Stop

Go

 

Figure 8.2 – Simulation process of an intersection with flashing green signals 

 

8.2.2 Simulation Results 

Figure 8.3 shows the impact of increasing expected mean speed of leading 

vehicles on the presence of risky situations. Increasing trends were found. When the 

expected mean speed increased from 40 mph to 50 mph, risky situations caused by a 

stopped car significantly increased, which indicated that many of the risky situations 

were due to drivers’ different stop/go decisions. When the expected mean speed 

increased from 50 mph to 60 mph, the percentage of drivers who chose to stop dropped 

significantly because of the relatively larger parameter estimate of speed Group 3 in the 

model (equal to 3.2820). Thus, there was no significant increase in risky situations 

caused by stopped cars when the expected speed increased from 50 mph to 60 mph. 

Additionally, Figure 8.3 shows the comparison of the intersection with the 

flashing green signal and the typical intersection. The flashing green led to a longer 

driver indecision interval, and drivers’ behaviors were more varied, which made drivers’ 

behaviors harder to predict and could lead to rear-end crashes. No significant 

improvement was found. However, when the vehicles had high operating speed or there 

was low variance of the speed between vehicles, higher risk probabilities presented. The 

different acceleration or deceleration decisions during the flashing green phases caused 

the increasing risky probabilities in some cases. The results were consistent with the 

results of the previous study (Factor et al., 2012). 
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(a) 

 

(b) 

 

(c) 

Figure 8.3 - Impact of expected mean speed of leading vehicles on risky situations 

at the typical intersection and the intersection with flashing green signal 

(a) P-RS1, (b) P-RS2, and (c) P-BRAKE 
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Figure 8.4 shows the spatial and temporal information of the risky situations of 

the intersection flashing green signals. When the expected mean speed was 30 mph, 

most of the risky situations presented during 25-45 seconds at 7.5 m (5 cells) to 60 m 

(40 cells) away from the stop line. When the expected mean speed increased from 30 

mph to 60 mph, the time range increased to 25-50 seconds and the distance range 

increased to 7.5 m (5 cells) to 75 m (50 cells). Thus, both the time and the distance 

range of the risky situations’ distributions were increased with the increase of the 

expected mean speed. 

The RLR risk of the flashing green did not have a significant effect compared to 

the typical intersection because in both scenarios the drivers made their stop/go 

decisions based on the logistic model, which was affected by speed, distance, or the 

lead/follow position of the vehicles (see Table 8.3). 

 

Table 8.3 - P-RLR of the typical intersection and the intersection with flashing 

green signal 

Expected Speed Distribution 
Scenario 

(30, 5) (40, 5) (50, 5) (60, 5) (50, 2) (50, 10) 

Typical Intersection Scenario (*10-4) 37 56 166 52 323 134 

Flashing Green Scenario (*10-4) 37 84 205 85 300 138 
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                                   (a)                                                                 (b) 

 

                                   (c)                                                                 (d) 

Figure 8.4 - Spatial and temporal distribution of risky situations at the intersection 

with flashing green signals 

(a) RS1 and RS2 when the expected mean speed was 30 mph, (b) RS1 and RS2 

when the expected mean speed was 60 mph, (c) emergency brake situations when 

the expected mean speed was 30 mph, and (d) emergency brake situations when 

the expected mean speed was 60 mph (standard deviation = 5 mph) 
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8.3 Intersection with Pavement Marking 

8.3.1 Scenario Construction 

The rules of pavement marking are depicted in Figure 8.5. Two cars (A & B) face 

the change of yellow indication. Since car B has passed the pavement marking, s/he 

should choose to go while car A should choose to stop. 

 

 

 

Figure 8.5 - Scenario of intersection with pavement marking 

 

ITE’s Engineering handbook (Pline, 1999) suggests the distance from the 

marking to stop bar is 

 

𝑋 = 𝑉0𝑡 +
𝑉0

2

2𝑎+19.6𝑔
                                                   (8.1), 

where V0 is the 85th percentile speed or speed limit, t is the reaction time, a is the 

average deceleration rate, and g is the grade of the intersection. In this study, the 

pavement marking was designed with a 45 mph speed limit. 
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8.3.2 Simulation Results 

Figure 8.6 demonstrates the risky situations probabilities of pavement-marking 

scenarios. Significant improvement in the three different types of risky situations was 

observed, especially in risky situations caused by non-stopped vehicles. The pavement 

marking countermeasures had a more positive effect when the operating speeds of the 

vehicles were relatively higher. When the expected mean speed was 30 mph, little effect 

was found in reducing the risk probabilities. The probabilities of risky situations under the 

pavement-marking scenario increased with the increasing of the standard deviation and 

the expected mean speed. 

Figure 8.7 depicts the presence of risky situations at the intersection with the 

pavement-marking countermeasure. Compared with the simulation with expected mean 

speed of 30 mph and the simulation with expected mean speed of 60 mph, the 

pavement-marking countermeasure effectively prevented the expansion of the distance 

range. 

The pavement marking significantly increased the risk of RLR violations in the 

vehicles with a low operating speed or a high variance. The reason for this phenomenon 

was that the design speed for the pavement marking was 45 mph. If the vehicle’s speed 

was lower than the design speed, there was a high risk of RLR violations. Thus, the 

pavement-marking countermeasure had positive effects on reducing rear-end crash risks. 

When the vehicles had low operating speed, the safety of the intersection was 

dramatically decreased (Figure 8.8). 
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(a) 

 

(b) 

  

(c) 

Figure 8.6 - Comparative risky situations probabilities analysis of the typical 

intersection and of the intersection with pavement marking 

(a) P-RS1, (b) P-RS2, and (c) P-BRAKE 
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                        (a)                                                                  (b) 

 

                        (c)                                                                  (d) 

Figure 8.7 - Spatial and temporal distribution of risky situations at the intersection 

with the pavement marking and an auxiliary indication countermeasure 

(a) RS1 and RS2 when the expected mean speed was 30 mph, (b) RS1 and RS2 

when the expected mean speed was 60 mph, (c) emergency brake situations when 

the mean speed was 30 mph, and (d) emergency brake situations when the 

expected mean speed was 60 mph (standard deviation = 5 mph) 
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Figure 8.8 - Probability of RLR violation at the intersection with pavement marking 

 

8.4 Intersection with Pavement Marking and an Auxiliary Indication Countermeasure  

8.4.1 Scenario Construction 

The flashing yellow signal beside the pavement marking was a warning signal, 

which was onset if the speed of the vehicle was below the speed limit. The flashing 

yellow signal began to flash a few seconds (about 1-3 s) before the onset of the yellow 

indication and continued until the end of the red interval. Given this disadvantage of 

pavement marking, a new countermeasure was proposed to solve this problem – install 

an auxiliary flashing yellow signal next to the pavement marking. Thus, we proposed a 

fourth scenario with both pavement marking and an auxiliary flashing yellow indication 

(PMAIC). 

In Figure 8.9 (a), when vehicles were approaching the intersection with a speed 

lower than the speed limit of the intersection approach (45 mph), the auxiliary flashing 

yellow indication began flashing at n seconds before the yellow phase. If the vehicle had 

not passed the pavement marking before the onset of the auxiliary flashing yellow 

indication and could see the flashing indication, the driver should have chosen to stop 

during the yellow interval. Otherwise, the driver should have chosen to go at the yellow 

duration. In Figure 8.9 (b), when the operation speed of the vehicle was not below the 
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speed limit (45 mph), the driver should have followed the rules, which were similar to the 

pavement-marking scenario. 

 

 

(a) 

 

(b) 

Figure 8.9 - Scenario of the PMAIC 

(a) approaching the intersection with a speed below the speed limit and (b) 

approaching the intersection with a speed not below the speed limit 

 

The processes of the PMAIC scenario simulation are shown in Figure 8.10. The 

value 𝑡𝐹 was based on the vehicles’ current speed at 5 seconds before the onset of the 

yellow indication. 

 

𝑉𝑐𝑡𝐹  = 𝑉0𝑡𝑌-𝑉𝑐𝑡𝑌                                                    (8.2) 
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then, 

𝑡𝐹  =
V0𝑡𝑌−Vc𝑡𝑌

Vc
                                                                      (8.3) 

 

where  𝑉0 denotes the speed limit or 85th percentile speed, 𝑉𝑐  denotes speed n seconds 

before the onset of the yellow indication, and 𝑡𝑌 denotes the yellow interval. The value 

for the judgment time n is 

 

n =
V0𝑡𝑌−Vmin𝑡𝑌

Vmin
+ 1                                                (8.4) 

 

where Vmin denotes the expected minimum speed of vehicles. For example, if a vehicle 

approached the intersection at 30 mph (13.4 m/s), which was lower than the speed limit 

45 mph (20 m/s), then 2.3 seconds before the yellow phase, the auxiliary flashing yellow 

indication next to the pavement marking began to flash. 
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n seconds before onset of yellow 
signal

If car speed>speed 
limit

Follow 
the rules of pavement marking

 Onset 
the auxiliary flashing yellow 

indication 

Go through pavement 
marking

Go Stop

Go through pavement 
marking

Go Stop When onset of yellow 
indication

Yes YesNo No

Yes No

       seconds before onset 
of yellow indication

 

Figure 8.10 - Simulation processes of pavement marking and auxiliary flashing 

indication 

 

8.4.2 Simulation Results 

The PMAIC scenario simulation results are shown in Figure 8.11. Compared with 

the pavement marking scenarios, the PMAIC intersection had less rear-end risk 

situations. The decrease in probability of rear-end RS under the PMAIC became much 

less apparent when the average speed was above 45 mph because the cars followed 

the rules of pavement marking if speeds were larger than 45 mph. Like other scenarios, 

the probability of risky situations under the PMAIC scenario increased with the standard 

deviation of speed. However, compared with other scenarios, it also decreased the 

probability of rear-end crash risks under the situation of high variance operating speed. 
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(a) 

 

(b) 

  

(c) 

Figure 8.11 - The probabilities of different types of rear-end RS under the 

pavement-marking scenario and the PMAIC scenario 

(a)RS1, (b) RS2, and (c) BRAKE 
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                        (a)                                                                  (b) 

 

                        (c)                                                                  (d) 

Figure 8.12 - Spatial and temporal distribution of risky situations at the 

intersection with the PMAIC 

(a) RS1 and RS2 when the expected mean speed was 30 mph, (b) RS1 and RS2 

when the expected mean speed was 60 mph, (c) emergency brake situations when 

the mean speed was 30 mph, and (d) emergency brake situations when the 

expected mean speed was 60 mph (standard deviation = 5mph) 
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Figure 8.12 demonstrates the risky situations with different expected mean 

speeds. The number of risky situations increased with the increase of expected mean 

speed. Similar to the pavement-marking countermeasure, the PMAIC also effectively 

prevented the increase of the distance range. In addition, during the new-

countermeasure scenario simulation, rare RLR violations happened. Therefore, the 

PMAIC effectively reduced both the rear-end risky situations and the RLR violations. 

8.5 Comparative Analysis 

8.5.1 Rear-End Risks 

Figure 8.13 demonstrates the rear-end crash risks of the different intersection 

scenarios. A clear trend was found in that the mean speed or standard deviation can 

influence the BRAKE and RS2 risk probabilities. The RS1 risks for scenarios did not 

increase obviously when the speed rose from 50 mph to 60 mph. Low standard deviation 

showed a positive effect on safety improvement. In all of the four scenarios, the (50, 2) 

speed distribution simulations had the lowest risk probabilities. The results revealed that 

the main contributing causes to accident risk were high mean speed and high standard 

deviation of the speed distribution. Figure 8.13 also illustrates that the standard deviation 

did not have a significant impact on rear-end RS when greater than 5 mph. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 8.13 - The probability of different kinds of rear-end RS under the scenarios 

of typical intersection, intersection with flashing green signals, intersection with 

pavement marking, and intersection with PMAIC 

(a) RS1, (b) RS2, and (c) BRAKE 
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From the comparison, the results also showed that the flashing green 

countermeasure did not improve safety significantly, especially under the situations of a 

high mean speed or a low standard deviation of speed distribution. The rear-end risk 

probabilities of the flashing green countermeasure were even higher than the 

probabilities of the typical intersection. Distinction between the typical intersection 

scenario and the flashing green scenario was probably due to the increase of the 

indecision period when drivers behaved differently. Even though previous studies found 

that many drivers decelerated during the flashing green interval and somehow 

decreased the probability of rear-end crash risky situations, some of the flashing green 

intersections still suffered from high-risk probabilities for all three types of risk situations. 

Köll et al. (2004) found that the flashing green phases are associated with a substantial 

increase of early stop. However, it also produced larger indecision zones and led to 

longer periods of uncertainty, where following drivers cannot easily predict the front 

vehicles’ stop/go decision (Factor et al., 2012). With respect to the pavement-marking 

scenario, it decreased the rear-end crash risks. All of the risk probabilities of the 

intersection with pavement marking were lower than the typical intersection and the 

intersection with flashing green phases, especially rear-end crashes caused by non-

stopped cars, which meant the front vehicles in the crashes chose to cross the 

intersection during the yellow interval. The PMAIC effectively reduced the rear-end crash 

risk probabilities, especially at the low expected mean speed and the scenario with a 

high standard deviation. 

Compared with the typical intersection scenario, the flashing green scenario had 

a larger range of the emergency brake risk at both time and distance distribution. 

Because of the difference of the driver behavior during the flashing green phases, there 

were more risky situations present at the flashing green interval (see Figure 8.14). 
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                                    (a)                                                                  (b) 

 

                                    (c)                                                                  (d) 

Figure 8.14 - Spatial and temporal distribution of risky situations when the mean 

expected speed was 60 mph 

(a) RS1 and RS2 of the typical intersection scenario, (b) RS1 and RS2 of the 

flashing green scenario, (c) emergency brake situations of the typical intersection 

scenario, and (d) emergency brake situations of the flashing green scenario 

(standard deviation = 5 mph) 

 

Compared with the spatial and temporal distribution of pavement marking, fewer 

risky situations were observed at the PMAIC scenario, especially during the yellow 
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interval and the beginning of the red interval. The results indicated the PMAIC effectively 

mitigated the problem of the dilemma zone (see Figure 8.15). 

 

 

                                       (a)                                                            (b) 

 

                                       (c)                                                            (d) 

Figure 8.15 - Spatial and temporal distribution of risky situations when the mean 

expected speed was 30 mph 

(a) RS1 and RS2 of the pavement marking scenario, (b) RS1 and RS2 of the PMAIC 

scenario, (c) emergency brake situations of the pavement marking scenario, and 

(d) emergency brake situations of the PMAIC scenario (standard deviation = 5 mph) 
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8.5.2 Red–Light Running Risk 

At the yellow duration, drivers’ false stop/go decisions can lead to red-light 

running (RLR) violations. During the simulation, the percentage of false decisions, or the 

potential for red-light running violations, was calculated. The results are shown in Figure 

8.16. In the scenarios of typical intersection and intersection with flashing green signal, 

the comparison between different lead vehicles’ speed distributions illustrated that mean 

speed was an important factor for the decision-making. The highest risk probabilities 

occurred at the 50 mph mean speed distribution. The standard deviation was also found 

to have little impact on the drivers’ typical stop/go decision. 

Previous studies pointed out that drivers would be more prone to stop at the 

intersection with the flashing green/yellow phases (Newton et al., 1997). This was 

because many of the drivers would decelerate during the flashing green phases, which 

would lead to lower speed at the onset of the yellow indication. These driver behaviors 

would increase the stop decisions according to the logistic regression model of stop/go 

decisions. However, drivers would still make decisions based on their own judgment, so 

the percentage of false go decisions would not decrease. The simulation results 

suggested that the flashing green phase measure could not effectively decrease the 

percentage of false decisions by drivers. 

From the analysis of rear-end crash risk, it seemed that the pavement marking 

was an effective countermeasure to improve rear-end risk. However, Figure 8.16 

demonstrates that the RLR violations were significant when the mean speed of the 

leading vehicles’ speed distribution was lower than 50 mph or the standard deviation of 

the speed distribution was high. The disadvantage of the pavement marking was that if a 

driver encountered the yellow signal at a speed lower than the speed limit, even though 

s/he had passed the pavement marking, there was still a high chance for RLR and s/he 

could not execute the go maneuver safely. Such a negative situation might have resulted 
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in RLR due to the lower approaching speed. Therefore, the pavement marking 

effectively improved the intersection’s safety only when the vehicles were approaching 

the intersection with high speed and low speed differences between vehicles. Otherwise, 

the pavement-marking countermeasure led to a high chance of RLR violations. Rare 

RLR violations happened during the simulation of the PMAIC scenario. 

 

 

Figure 8.16 - Probability of RLR RS under different scenarios 

 

8.6 Conclusions 

Driver behavior during the yellow interval was influenced by the operating speed, 

the distance to the stop line, and the lead/follow position of the vehicle in a platoon. A 

logistic regression model was used to predict the stop/go decision of drivers as a 

function of distance to the stop line, the operating speed, and the lead/follow position. 

Most of the RLR violations were caused by drivers’ false stop/go decisions during the 

yellow interval. 

From the simulation results, the mean speed and the standard deviation played a 

significant role in rear-end crash risk situations, where a lower speed and lower standard 
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deviation led to less rear-end crash risk situations at the same intersection. High 

differences in speed were more prone to cause rear-end crashes. 

According to the comparative analysis (Table 8.4), the flashing green 

countermeasure had little influence on rear-end crash risk reduction. The difference 

found between drivers’ deceleration and acceleration decisions might be the major 

reason for the presence of the accident risk in the flashing green scenarios. Meanwhile, 

the pavement-marking countermeasure could effectively decrease the rear-end crash 

risk in most situations, especially the rear-end crashes caused by non-stopped cars, 

which meant the front vehicles in the crashes chose to cross the intersection during the 

yellow interval. The PMAIC, or the addition of an auxiliary flashing yellow indication next 

to the pavement marking, could further reduce the rear-end crash risks when the 

expected mean speed of the leading vehicles was relatively low. 

 

Table 8.4 - Comparative analysis of different dilemma zone countermeasures 

Risky 
Situations 

Flashing Green 
Countermeasure 

Pavement-Marking 
Countermeasure 

PMAIC 

Rear-end 
crash risk 

Increased the risk of 
rear-end crash 

Decreased the risk of 
rear-end crash 

Decreased the risk of rear-
end crash, especially when 
the expected mean speed 

was relatively lower 

RLR 
violations 

No significant impact 
on reducing RLR risk 

Significantly increased 
the RLR with low 

expected mean speed 

Effectively reduced the 
probabilities of RLR 

violations’  

 

 

With respect to RLR violations, the RLR risk analysis showed that the mean 

speed of the leading vehicles had important influence on RLR risk in the typical 

intersection simulation scenarios as well as in the intersection with flashing green signal 

simulation scenarios. The results indicated that the flashing green phases could not 

reduce the percentage of false go decisions because the drivers made stop/go decisions 
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based on their own speed and position instead of other drivers’ approaching speeds. 

The pavement marking could effectively reduce RLR risk situations when the vehicles 

were approaching the intersection with high speed and low speed differences with other 

vehicles. Otherwise, the intersection suffered from a high potential of RLR violations. 

The PMAIC had rare RLR violations. Therefore, PMAIC could effectively improve safety 

at signalized intersections. 

Spatial and temporal analyses of the risky situations indicated that both the 

distance and the time range of the risky situations would increase with the increase of 

the operating speed of the vehicles. The pavement-marking countermeasure and the 

PMAIC could effectively prevent the increase of the distance range with the increase of 

the operating speed. Comparative analyses of different scenarios demonstrated the 

effectiveness of the PMAIC in reducing the probabilities of risky situations. 
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CHAPTER 9: Conclusions 

The rapid development of ITS systems in the past few decades has catalyzed the 

implementation of Big Data in the transportation arena. To harness the power of Big 

Data for better traffic system performance, it is vital to take full advantage of its real-time 

nature. In this project, real-time traffic data from various sources, ranging from Automatic 

Vehicle Identification (AVI) systems and Microwave Vehicle Determination Systems 

(MVDS) to Video Image Processing (VIP), were implemented to explore their viability to 

improve the operation efficiency and traffic safety. To achieve the goal, multiple 

applications of the data were tested, including efficiency evaluation, safety analysis, 

microscopic simulation, and cellular automaton simulation. 

Currently, three major types of automatic traffic detection technologies are widely 

used, namely in-roadway, over-roadway, and off-roadway detection technologies. In this 

project, real-time traffic data from point-based MVDS, video processing systems, and 

segment-based AVI system were collected on urban expressways and at a signalized 

intersection in the Orlando area. To ensure the validity of research findings, data quality 

were evaluated, especially for the MVDS and AVI systems. It was found that despite the 

two systems generating a large amount of data in real-time, the quality of the data was 

high enough (normally with a percentage of good data above 98%). Moreover, 

appropriate data processing helped identify the abnormal data to exclude in order to 

improve the data quality. The AVI system could provide segment speed and travel time 

information at an individual vehicle level. However, it could not capture the total traffic on 

expressways. In contrast, MVDS returns traffic information per lane aggregated at one-

minute intervals. MVDS could be used to monitor traffic volume, speed, and occupancy 

at the detection locations. Video data provided other insights about driver behavior, such 

as stop/go decision red light running at intersections. 
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For traffic efficiency measurements, two major efforts were made. Real-time 

congestion measures were introduced based on the AVI system. The congestion 

measures evaluated congestion on the studied urban expressways from the perspective 

of travel time. With the real-time traffic data, congestion conditions were evaluated at 5-

minute intervals, thus rendering detailed descriptions about the spatial-temporal 

distribution of congestion. It was found that congestion on urban expressways occurred 

mainly during morning and evening peak hours. Nevertheless, the segments 

experiencing congestion were location-specific. On segments with high traffic demand 

and near interchanges with other major corridors, congestion was more likely to occur. 

Some previous studies have pointed out that it is the unexpected delays rather 

than the everyday delays that cause more frustration to motorists. Consequently, travel 

time reliability based on real-time traffic data was investigated. In the absence of large 

quantities of probe vehicles for the foreseeable future, the AVI system served as an ideal 

tool to evaluate travel time reliability for two reasons. One advantage was that it 

measured travel time directly. The other was that real-time evaluation was made 

possible because individual vehicles could be detected by AVI detectors. Statistical 

range measures, buffer indicators, and tardy trip indicators were all tested for 

performance in travel time reliability measurement. The conclusions from different 

measures agreed with each other. In addition, although unexpected delays were 

different from everyday congestion, it was found that the congested segments had lower 

travel time reliability compared with other segments whose traffic was closer to free-flow 

conditions. Improving recurrent congestion was also likely to have positive effects on 

travel time reliability improvement. 

In addition to traffic efficiency, traffic safety is another critical aspect of highway 

performance. In this project, real-time safety evaluations for both the mainline and ramps 

were conducted based on the MVDS traffic data. For ramp safety analyses, real-time 
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information from nearby airports was incorporated into the evaluation. For mainline 

safety evaluations, crash precursors for total crashes were identified. It turned out that 

peak hours had a major impact on crash occurrence. Real-time traffic volume per lane, 

speed differences between inner and outer lanes, congestion index, and truck 

percentage were significant traffic variables affecting crash occurrence. Geometric 

characteristics such as number of lanes, median width, and shoulder width were also 

found to be significantly tied with mainline crashes. For ramp crashes, in addition to the 

traffic parameters (volume, speed, and truck percentage), ramp configuration, real-time 

weather conditions, and road surface conditions also had an impact on crash occurrence 

in real-time. According to the safety analyses, both mainline and ramp crash prediction 

models achieved good estimation accuracy. Consequently, the automatic traffic 

detection data showed great potential for the construction of a more proactive traffic 

safety management system. 

Microscopic simulation is a cost-effective way for traffic researchers to evaluate 

traffic operation on existing or proposed facilities. However, the performance of 

simulation heavily depends on the input traffic data. In this project, simulation of traffic 

under foggy conditions using field traffic data was tested in the VISSIM environment. 

The surrogate safety assessment model (SSAM) for rear-end and lane-change conflicts 

under reduced visibility was estimated via simulation. To achieve the objective of this 

task, fog data and traffic detection data at a specific location on I-4 were collected. In the 

simulation, real traffic flow observations corresponding to fog conditions were input to 

the system. By using real-time traffic data, validation and calibration of the microscopic 

simulation model could be significantly enhanced by providing traffic data at short-time 

intervals. Meanwhile, the traffic flow corresponding to a specific condition (adverse 

weather, or fog) could be captured, thus the evaluation was closer to reality. The 

simulation results indicated that the total number of conflicts, lane-change conflicts, and 
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rear-end conflicts increased along with the traffic volume and speed limit. Given foggy 

conditions decrease the visible distance for motorists, a lower speed limit was 

recommended to ensure that vehicles could slow down in time to avoid potential 

collisions. In addition, if traffic volume was high, reducing speed limit alone in the face of 

fog would have only limited effects on traffic flow. In such cases, other countermeasures 

such as warning messages, detour strategies, or even closure of roadway facilities might 

be needed. 

The above efforts were focused on freeway/expressway safety and operation. In 

urban areas, safety conditions at signalized intersections also call for attention. Drivers’ 

stop/go decisions in dilemma zones at intersections could significantly affect the safety 

level. Traditional traffic models for the dilemma zone could be cumbersome in terms of 

time consumption and complexity of the modeling process. In contrast, Cellular 

Automaton (CA) models are simulation based models that could more efficiently deal 

with the dilemma zone issue. Nevertheless, studies seldom take advantage of real-time 

traffic data. In this project, real-time traffic data at intersections were extracted from 

video processing systems to generate the rule of drivers’ stop/go decisions. Speed 

variables, distance variables, leading or following position, and some other factors from 

the video data were prepared. Based on the data, rear-end risks and red-light-running 

risks were evaluated. From the simulation results, the mean speed and the standard 

deviation played a significant role in rear-end crash risk situations. Appropriate 

countermeasures to cope with dilemma zone problems were tested and identified (e.g., 

pavement marking, flashing yellow, and the combination of the two). Pavement-marking 

countermeasures could effectively decrease the rear-end crash risk in most situations, 

especially the rear-end crashes caused by non-stopped cars. The PMAIC, or the 

addition of an auxiliary flashing yellow indication next to the pavement marking, could 

further reduce the rear-end crash risks when the expected mean speed of the leading 
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vehicles was relatively low. For RLR violations, simulation scenarios reflected that mean 

speed of the leading vehicles had an important influence on RLR risks. The pavement 

marking could also effectively reduce RLR risk situations when the vehicles were 

approaching the intersection with high speed and low speed differences with other 

vehicles. On the other hand, the PMAIC had rare RLR violations. Therefore, PMAIC 

could effectively improve safety at signalized intersections. 

In this project, different applications of microscopic big traffic data were evaluated. 

It was confirmed through evaluation that these data could efficiently aid professionals’ 

understanding in traffic operation and safety and help traffic authorities to come up with 

more proactive traffic management strategies. Furthermore, different simulation tests 

also proved that real-time traffic data helped to better reflect the traffic conditions in a 

specific simulated environment in which more accurate countermeasures could be 

suggested. In summary, microscopic big traffic data have great potential in future 

simulation-based traffic studies. 
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