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Abstract 

Cooperative driving powered by connected vehicle (CV) technology is expected to improve 

traffic safety and efficiency, especially at locations with dense vehicle interactions. Although lots 

of research have developed their cooperative driving algorithms for different locations, the 

effects of human drivers in the loop and multi-agent driving decision making are less studied. 

In this project, three tasks were investigated: (1) developing cooperative driving strategies 

(CDS) for non-signalized intersections in a mixed traffic environment, and testing its effects in 

different automation level and market penetration rate; (2) proposing human-machine-interfaces 

(HMI) for non-signalized intersection cooperative driving, and evaluating the performance of 

different HMIs in various traffic conditions; (3) training a cooperative decision-making strategy 

for cooperative diverging at freeway off-ramp based on multi-agent reinforcement learning. 

UCF-SST self-developed human-in-the-loop co-simulation platform is used to complete the 

tasks. 

For task 1, an efficiency-oriented CDS was developed for mixed traffic cases, and tested on 

different CV and CAV market penetration rates. The experiment results showed that the 

proposed CDS can reduce up to 53.8%, 66.4%, and 73.7% of travel time in CV-HDV (human-

driven vehicle), CV-CAV, and CAV environments, respectively. For task 2, a driver-centered 

CDS was developed by modifying the algorithm in task 1, and then three different cooperative 

driving HMIs were designed and evaluated on the simulators. The results suggest a graphic-

based HMI is better at displaying minor speed change requirements to the drivers, and it can 

guide the drivers approaching an intersection with better precision. For task 3, a multi-agent 

deep-Q network (MADQN) was trained for decision-making on freeway off-ramp diverging 

driving scenarios. The trained model significantly outperformed the baseline model in terms of 

efficiency and safety while ensuring decent successful diverging rate. 

 

 



 

1 Introduction 

Traffic conflicts and accidents appear more frequently in road sections with intensive 

vehicle interactions. Minor driver misjudgments or improper decisions due to the 

incomplete perception of vehicle interactions may lead to severe traffic conflicts or even 

accidents. According to a National Highway Traffic Safety Administration (NHTSA) 

study, driver error led to 94% of the crashes [1]. Furthermore, the U.S. General Services 

Administration (GSA) reported that human error causes 98% of crashes [2].  

Freeway off-ramps and non-signalized intersections are generally considered as 

locations that involve plenty of vehicle interactions, especially during peak hours. Near 

the freeway exit, if a vehicle traveling in the inner lane wants to leave the freeway, it has 

to traverse more than two lanes to reach the freeway exit on the right side. During this 

lane change process, intensive vehicle interaction will occur between diverging vehicles 

and through vehicles, particularly when the traffic is heavy. In addition, if a driver misses 

the best timing to drive to the outside lane, the driver may be forced to change the lane 

in an abrupt way, which raises crash risks and deteriorates safety. 

Similar to the freeway exit, non-signalized intersections are also regarded as hotpots 

with sophisticated driving behavior and plenty of vehicle interactions. At no-signalized 

intersections, vehicles from different approaches may enter the intersection 

simultaneously and strongly interact with each other. In a traditional human-driven 

vehicle (HDV) environment, drivers approaching the intersection are not aware of the 

position and speed of other vehicles until they become visible or close enough. Typically, 

a driver would wait at the stop sign first and then determine whether he/she has the 

priority to drive through. However, the right-of-way is not always clear, making drivers 
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hesitate whether to continue driving or to stop. In some cases, the involved drivers may 

enter the intersection simultaneously and some of them may have to initiate a sudden 

brake later to yield to others, which not only significantly deteriorates traffic efficiency 

and driving comfort, but also increases the risks of vehicle conflicts or even crash.  

The recent advancement of connected and automated vehicle (CAV) technology 

brought unprecedented opportunities to develop and implement cooperative and 

automated driving strategies, and diminish human driving errors and enhance traffic 

safety at abovementioned two locations. The cooperative driving strategy (CDS) is 

expected to mitigate or even avoid intensive vehicle interactions in complicated driving 

environments by enabling vehicle dynamics (position, speed, acceleration, headway, 

etc.) and driving intention (lane change, driving priority, etc.) to be broadcasted to the 

involved vehicles, and thus enable collaborative decision making and vehicle control to 

improve driving safety and efficiency. 

Recently, CDS of all sorts of control mechanisms have been proposed. However, 

there are a few limitations that they did not address. First, most of the existing CDS are 

developed in a connected and automated vehicle (CAV) environment that assumes 

autonomous vehicle control with absolute precision. However, this is still far from 

application as no such CAV environment is available on road up to date. Instead, 

cooperative driving between CVs could be realized in the foreseeable future as onboard 

unit (OBU) with communication capability becomes more and more prevalent. Therefore, 

CDS for CV that considers driver acceptance and driving imperfection should be 

developed. 

Second, the cooperative driving suggestions (e.g., desired speed) are delivered to 

the CV drivers through in-vehicle human-machine interface (HMI), such as head-up 

display (HUD). The design of the HMI is expected to affect the drivers’ acceptance and 
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response to the driving guidance, and further impacts the cooperation between vehicles. 

However, despite some studies focused on the design of HMI, none of them is designed 

for cooperative driving that provides CV drivers with real-time speed guidance. In the 

non-signalized cooperative driving scenario, the CV drivers may be requested to take 

acceleration or deceleration action to avoid a potential conflict when approaching the 

intersection, however the exact action and scale of such action required is difficult to 

interpret and deliver to the CV drivers. Due to this reason, the HMI design should 

consider the drivers’ acceptance and adaptability to the real-time speed suggestion, as 

the HMI is supposed to display the driving guidance effectively with minimum cognitive 

load for the CV drivers. 

Third, most of the existing CDS algorithms are model-based algorithms (e.g. model 

prediction methods, rule-based models), which might be outperformed by state-of-the-art 

model-free methods like deep learning and reinforcement learning. Although there has 

already been some machine learning-based research focused on vehicle cooperation at 

many locations such as the on-ramp merging, the algorithms for some other driving 

environments like off-ramp diverging remain largely unexplored. Furthermore, the 

domain of multi-vehicle cooperation is less studied, which is crucial in heavy traffic 

circumstance as the computing demand increases exponentially as the number of 

vehicles increases. 

To address the abovementioned issues and fill the research gaps, this study aims at 

proposing CDS algorithms for both the non-signalized intersection and off-ramp 

locations, and testing the CDS through microscopic simulation driving simulator 

experiments. There are three tasks to be fulfilled in this research: 

Task 1:  Propose CDS for non-signalized intersection 
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To develop an ad-hoc negotiation-based cooperative driving algorithm for CV at the 

non-signalized intersection, and test the performance of CDS in a mixed traffic 

environment with different CV and CAV market penetration rates (MPR) by conducting 

multi-driver simulation experiments.  

Task 2: Design cooperative driving HMI  

To design different in-vehicle HMIs for CDS at non-signalized intersections that 

provide CV drivers with real-time driving speed suggestions in an understandable way. 

The effects of different HMIs are to be investigated through multi-driver-in-the-loop co-

simulation experiments.  

Task 3: Reinforcement learning at the off-ramp 

To propose a multi-agent reinforcement learning algorithm that cooperates off-ramp 

diverging vehicles and through vehicles by learning an optimal policy for lane change 

and vehicle following decision making. Microscopic traffic simulation will be used to train 

the model and test its performance in various traffic demand conditions. 

2 Literature Review 

2.1 Cooperative Driving 

The concept of cooperative driving was first described by the Association of Electronic 

Technology for Automobile Traffic and Driving in Japan in the early 1990s [3]. Its key idea 

is to organize and coordinate the movements of neighboring vehicles [4], [5]. Its 

implementation depends on fast and reliable wireless V2V communication. Research 

concerning this issue can be found in [6], [7]. There are various topics related to 

cooperative driving, ranging from developing CDSs for different scenarios to VANET 

design, to CDS evaluation considering multiple factors including V2V communication 

effects, road geometry, and vehicle kinematic information, etc.  
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2.1.1 Intersections 

Cooperative driving at intersections has been widely studied. For signalized 

intersections, the prevalent topic is the advanced traffic signal control via vehicle-to-

infrastructure (V2I) communication that is based on the assumption that vehicles’ 

movements will only be controlled by traffic lights. The key element of this topic is the 

prediction of accurate arriving rates of traffic flows in the next few minutes so that the best 

traffic light timing that maximizes traffic efficiency can be calculated [8]–[10]. Xie et al. [11], 

He [12] and Gaur and Mirchandani [13] explored platoon-based traffic control. The idea is 

to group vehicles into several platoons before they arrive at the vicinity of the intersection. 

Cooperative driving for non-signalized intersections is another research hotspot. Two 

different control methods of CDS have been widely studied: “ad hoc negotiation based” 

and “planning based”. Efficiency improvement is the prior objective for their CDS. The first 

method makes vehicles roughly follow first-come-first-served order to pass the 

intersection, while the second one considers vehicles arriving within a certain spatial 

scope and formulates relatively long-term driving plans for vehicles. Tachet et al. [14] and 

Levin et al. [15] studied the first method, which is relatively simple but still practical. The 

planning-based CDS is expected to achieve better overall performance, and its 

effectiveness is tested by Zhang et al. [16] and Wu et al. [17]. The results indicate that 

cooperative control methods improve efficiency significantly compared to traditional traffic 

control methods, but when traffic load increases the performance deteriorated. Meng et 

al. [18] compared the two methods, and found out the planning-based methods yield much 

better performance in a high traffic demand scenario. Yang et al. [19] applied games 

theory to cooperative driving development for non-signalized intersections. Lee and Park 

[20] designed algorithms that eliminate the potential overlaps of vehicular trajectories 

coming from all conflicting approaches at the intersection. De Campos et al. [21] proposed 
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a velocity-based negotiation approach. In general, their CDS improves traffic efficiency by 

reducing travel time or traffic delay from 30% to 80%. Also, Lin et al. [22] developed CDS 

that considers mixed traffic scenarios. However, there is only coordination for CAV but no 

CAV-HDV coordination in the paper. Furthermore, the abovementioned CDSs are 

designed for a CAV environment, not for CV. As stated previously, it is necessary to 

develop CDS for CV to accelerate the implementation of cooperative driving. 

2.1.2 Off-ramp 

Although cooperative driving at off-ramps is less studied compared to on-ramp 

merging and weaving segment driving, there are several research that focus on 

collaborative decision-making or control mechanism at off-ramps. Dong et al. [23] used 

cooperative adaptive cruise control (CACC) to control vehicle following behavior to 

investigate the safety and efficiency benefits of CAV at the off-ramp. However, they did 

not consider lane change maneuver cooperatively but trained a human-like lane change 

decision model from ground truth trajectory data at the off-ramp. The paper by Wang et 

al. [24] did consider cooperative lane change by considering the lane utility and car-

following models of the following vehicles in adjacent lanes. Zheng et al. [25] proposed a 

cooperative algorithm based on the coordination of behaviors between the diverging 

vehicle and its cooperative vehicle on the target lane. The algorithm was developed by 

modifying Minimizing Overall Braking Induced by Lane Changes Model (MOBIL) and 

Intelligent Driver Model (IDM).  

Apart from the model-based algorithms, reinforcement learning (RL) has received 

increasingly attention in ramp-related optimization problems. Most of the RL algorithms 

are proposed to coordinate vehicles for on-ramp merging, nevertheless they share certain 

similarities with the off-ramp diverging problem and can provide insights for the design of 

off-ramp RL algorithm. The work done in [26] introduced a deep multi-agent RL algorithm 
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that applies safety masks to merging and through vehicles in a mixed traffic environment. 

A twin-delay Deep Deterministic Policy Gradient (DDPG) RL method is presented in [27] 

for decision-making at on-ramps, and the model showed great performance by reducing 

training time by 25%. Yu et al. [28] showed a distributed multiagent coordinated learning 

for CAV based on dynamic coordination graphs, which provides insights for the design of 

communication patterns for multi-vehicles on highways. Graph neural network has also 

been applied to represents the surrounding vehicle states in a mixed traffic environment, 

and it was used as input for a Deep Q-learning (DQN) algorithm for off-ramp diverging 

problem [29]. 

For the multi-agent domain, an independent MARL framework, called IQL, is 

proposed in [30], allowing each agent to learn independently and simultaneously while 

viewing other agents as part of the environment. More recently, parameter sharing 

method is widely applied with homogeneous agents [31], which bootstraps single-agent 

RL methods and learns an identical policy for each agent, and thus enables the handling 

of changes in the number of participating agents. A parameter-sharing A2C (MA2C) 

algorithm is proposed in their work to solve the fleet management problem and 

experimental results are given to confirm the performance. In [32], several state-of-the-

art single RL algorithms are extended to the MARL with parameter sharing denoted as 

MAPPO and MAACKTR.  

  

2.2 HMI Design 

There has been a boom in a variety of Advanced Driving Assistance Systems (ADAS) 

in terms of driving safety, eco-driving, and travel time saving. Different in-vehicle HMIs 

have also been developed to display the ADAS functions to the drivers. Visual-based and 

audio-based HMIs are the most widely adopted modalities for in-vehicle ADAS. New 
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modalities including haptic-based and AR-based HMI have also been proposed recently. 

Based on different functionalities, the HMI can be divided into two types: the notification 

HMI and the guidance HMI. The first type aims at providing drivers with event-based 

notification or alert, while the second type displays and updates driving guidance (e.g., 

suggested speed) in real-time. Most HMIs for safety-related ADAS belong to the first type, 

and multiple HMIs for safety warnings have been developed that aim at alerting drivers 

the presence of pedestrians or surrounding vehicles [33], [34]. The second HMI type is 

usually for achieving functions of eco-driving or cooperative driving. This type of HMI aims 

at consistently delivering the driving guidance to drivers, such as real-time suggested 

speed or throttle usage. As drivers are receiving information consistently, they could easily 

be cognitively overloaded if the HMI fails to display the information in a clear and 

understandable way. Various visual and haptic-based eco-driving HMIs have been 

proposed and tested through driving simulator experiments or field tests. It is Azzi et al. 

[35] who first studied the effect of visual and haptic in-vehicle assistance on eco-driving. 

A more comprehensive design of the visual guidance on throttle usage is presented in 

Jamson et al. work [33]. They introduced three types of dash-based guidance methods: 

dot system, gauge system, and foot system; each system is built on different images with 

different colors representing current state (blue, green, and red corresponds to insufficient, 

appropriate, and excessive pedal pressure, respectively). The haptic guidance system is 

also investigated in their research, and it is recommended to use a strong force feedback 

system. Masola et al. [34] discussed the design rules and requirements for in-vehicle HMI 

from the perspective of how to design a suitable graphic interface for various driving tasks. 

They also presented an HMI design that combined multiple guidance functions in a dash-

based display system, where the suggested speed and the current speed are displayed 

in sperate areas on the dashboard.  
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Cooperative driving at non-signalized intersections is aiming at changing vehicle 

speed to avoid unnecessary vehicle interaction at the intersection, and the cooperative 

driving HMI shall display and update the suggested speed to the drivers in real-time. As 

the optimal driving speed calculated by CDS may change consistently to adapt to the 

driving environment, the HMI needs to present the speed suggestion that quickly responds 

to the driving environment changes with high precision. However, the design of 

cooperative driving HMI that considers these requirements remains largely unexplored. 

The limited research on this cooperative driving HMI are mostly focused on assisting 

cooperative merging, which displays merging availability rather than speed guidance [36], 

[37]. For speed guidance HMI, the naive design that directly displays suggested speed is 

still widely adopted. As mentioned in [34], HMI with appropriate graphic design is expected 

to increase drivers’ acceptance and reduce cognitive load. Therefore, it is worth 

investigating and develop a graphic HMI for cooperative driving. 

2.3 Driving Simulator 

Driving simulators, which have been widely used for studying driving behavior and 

evaluating emerging vehicular technologies, could be an effective tool to test the 

performance of HMI designs. Generally, driving simulators are largely used for driving 

behavior analysis from measures including traffic safety [38], [39], traffic efficiency [39], 

[40], and driving comfort [41], [42]. For HMI design, most of the research also relies on 

driving simulators [33], [43]–[45]. However, single driving simulator may not be capable 

for testing the HMI under cooperative driving scenarios, as it does not allow multiple 

drivers to cooperate and thus multi-driver simulator is needed. Over the years, limited 

multi-driver simulators have been developed and used for research [46]–[48]. Moreover, 

the advent of co-simulation between driving simulator and traffic microsimulation allows 

more complicated traffic of high-fidelity to be produced in the driving simulators [48], and 
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it could be used to study the driving performance in a mixed traffic environment. Hence, it 

is beneficial to conduct a co-simulation experiment to investigate the effects of the in-

vehicle HMI designs in a mixed traffic environment. 

3 Methodology 

3.1 Apparatus 

The schematic diagram of our self-developed simulation platform is shown in Figure 

3.1. The simulation platform consists of two major modules: the multi-driver driving 

simulator module and the microscopic traffic simulation module. In the first module, the 

driver GUI clients are connected to the CARLA server through a network bridge, and the 

CDS is embedded in the clients via API. CARLA is an open-source autonomous driving 

simulator. The second module runs microscopic traffic simulation in SUMO, which is an 

open-source microscopic traffic simulator. The road network and driving behavior 

parameters in SUMO are calibrated using real-world trajectory data extracted from drone 

video. The real-world map is used to digital twin the simulation models in both modules. 

In the co-simulation mode, the two modules will run simultaneously and all the traffic 

participants are controlled synchronously. Data of the experiments is collected from both 

modules, and the driving behavior data and traffic flow data are matched according to 

vehicle ID and simulation timestep. 
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Figure 3.1 Schematic diagram of the simulation platform 

3.1.1 Microscopic Traffic Simulation 

The study area of this research is a 3-way stop control intersection inside the campus 

of the University of Central Florida in Orlando, FL, USA. The intersection is at the merge 

point of Aquarius Agora Drive, Greek Park Drive, and Gemini Boulevard (Figure. 3.2). It is 

a relatively busy intersection among stop control intersections, especially during commute 

hours. Queues are frequently observed during peak hours.  

 

Figure 3.2 The object intersection 

To reproduce real-world traffic flow and high-fidelity driving behaviors in simulation, we 

collected drone video data to extract vehicle trajectories for microscopic traffic simulation 
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model calibration. Drone videos were recorded at the intersection during peak hours in 

May 2020. Vehicle trajectories were extracted from the video, as shown in Figure. 3.3. 

Overall, more than 300 valid trajectories were collected. Afterwards, the parameters that 

are considered to affect driving behaviors at stop-control intersections are calculated and 

used for the simulation model calibration. 

 

Figure 3.3 Vehicle tracking and trajectory extraction 

The simulation model of the study area was built in SUMO (Figure 3.4). The road 

network in SUMO was generated from the Openstreetmap file. As shown in Figure 3.4, 

there are 3 entrances and exits of the intersection, whose start points or end points are 

marked as 1 to 6. The routes for entering the intersection are marked as R3, R1, and R5. 

To identify different routes of the intersection, each route is named after the combination 

of its start point and end point. For instance, the route starting from point 3 and ending at 

point 2 is marked as r32. These naming rules will be kept in the following paragraphs. The 

traffic flow and driving behavior parameters in the model were calibrated using trajectory 

data. The parameter values are shown in Table 3.1, including the trajectory-calibrated 

values and the SUMO default values. The parameters in the SUMO model were all default 

values except for those in Table 3.1.  
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Figure 3.4 SUMO model 

Table 3.1 SUMO model parameters 

Parameters Description Trajectory-

calibrated value 

SUMO 

default 

value 

minGap (m) Empty space after leader 3.19 2.50 

accel (m/s2) The acceleration ability of vehicles 1.46 2.60 

decel (m/s2) The deceleration ability of vehicles 1.88 4.50 

speedFactor The vehicles expected multiplicator 

for lane speed limits 

0.10 0.10 

speedDev The deviation of the speedFactor 0.10 0.10 

departSpeed 

(m/s) 

R3 The speed with which the vehicle 

shall enter the network 

10.36 0.00 

R1 9.56 0.00 

R5 8.96 0.00 

Probability 

(flows) 

r32 Probability for emitting a vehicle 

each second 

0.01 NA 

r36 0.05 NA 

r52 0.03 NA 

r54 0.06 NA 

r16 0.01 NA 

r14 0.01 NA 
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3.1.2 Multi-driver driving simulator 

In order to create a real-world-like virtual scene and provide a simulation platform that 

enables the interaction between subject vehicles, we developed our own multi-driver 

driving simulator (Figure. 3.5). The system was developed based on the Open-source 

autonomous driving simulator CARLA. The driving simulator system connects up to 3 

drivers to the CARLA server through a network bridge, and thus the drivers can 

simultaneously operate their vehicles in the same simulation environment. The data 

collection module was created to store the drivers’ driving behavior variables. Also, we 

have developed a driver navigation HUD module, which sends the navigation information 

and driving instructions calculated by the CDS to the drivers. 

 

Figure 3.5 UCF SST Multi-driver driving simulator 

The virtual scene in the simulator was created based on Openstreetmap and GIS data 

using CARLA-supported map creator RoadRunner. The map was duplicated in a way 

similar to the real-world geometry and surrounding environment to provide a verisimilar 

driving scene. The virtual scene is shown in Figure. 3.6. 
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Figure 3.6 Virtual scene in CARLA 

3.1.3 Co-simulation 

CARLA simulator and SUMO simulation were connected through the TraCI portal 

provided by SUMO, and real-time co-simulation is achieved. In the co-simulation mode, 

the road network in SUMO and the map in CARLA were matched, and all the vehicles and 

other traffic participants were synchronized in both software. When conducting driving 

simulator experiments, the vehicle generated by SUMO acted as background traffic which 

simulates the real-world traffic flow, and the vehicles spawned by CARLA were operated 

by the drivers. Hence, the drivers were interacting with vehicles in the real-world traffic 

flow. 

 

3.2 Cooperative Driving Strategy 

3.2.1 Task 1 

For task 1, we developed an “ad hoc negotiation based” cooperative driving strategy, 

which is based on the idea of first-come-first-served passing order. The CDS was 

developed based on the following assumptions: 
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(1) Roadside units (RSU) are built at the intersection. It is the calculation center of 

the CDS. The RSU has a data collection and transmission range of 150 m from the 

boundary of the intersection, which meets the standard of the Dedicated Short-Range 

Communications (DSRC) Standards in the United States [49]. The area within the 150 m 

communication range is named the Control Zone in the rest of the paper (Figure. 3.7). 

(2) The RSU receives information CV and CAV, including destination, position, 

speed and lane information collected when they are inside the control zone. Also, the 

same information of HDV can be collected by RSU through camera or Lidar tracking. 

The error for data transmission and vehicle perception is ignored. 

(3)  Once the RSU calculate the optimal passing schedule and form driving 

instruction, it is sent to the CV and CAV. CV drivers will receive messages for arrival 

time and speed suggestions, and CAV motion strictly follows the instruction.  

(4) With the CDS embedded, CV and CAV are not required to stop at the stop sign 

but to drive pass the intersection, if no conflict is expected. The vehicle under 

cooperation is not allowed to make overtaking maneuvers in the control zone. 

 

Figure 3.7 Control Zone 
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The CDS was designed to find an optimal vehicle passing schedule and travel speed 

for the upstream traffic of the intersection, and to achieve maximum throughput efficiency 

in a safe driving manner. To describe the objective of optimizing the passing schedule with 

minimum travel time (the time it takes from entering the control zone to the start point of 

the intersection), the following mathematical expression is used: 

1 1

 = ( ) ( )
m n

i j

i j

min T t CV t CAV
= =

+                     (3.1) 

where 𝑇 is the sum of the estimated travel times of the CV and CAV in the control zone, 

𝑡 is the estimated travel time for a single vehicle, and 𝑚 and 𝑛 refers to the number of 

CV and CAV, respectively. The travel time of HDVs is not considered in the equation, 

this is because they are unable to receive messages and will thus fail to follow the CDS.  

To achieve maximum traffic throughput efficiency, the vehicles should be instructed to 

drive as fast as possible under the speed limit. Also, driving at the instructed speed is 

expected to lead the CV/CAV into the intersection without causing a conflict. That is, 

there must be a sufficient time gap between the arrival times of two consecutively 

arriving vehicles at the conflict point. In the words, the interval of estimated arrival time 

for the first arriving vehicle should not overlap with the arriving time interval of the 

second arriving vehicle. Considering the geometry of the object intersection, we set the 

maximum driving speed to 55 kph. Vehicles that are under cooperation will be driving at 

the maximum speed unless instructed by the CDS to slow down. To better express the 

idea of saving travel time, we use the term arrival time to replace travel time, which 

refers to the time duration that the vehicle spends traveling from the current position to 

the start of the intersection or the conflict point of two routes. The arrival time is 

estimated based on the vehicle’s current position and speed, the driving parameters 

(trajectory calibrated), and random effects. The following expressions describe the 

optimization problem of forming an optimal vehicle passing schedule: 
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= ( )
vehn

arr

i i

i

min T t veh   for veh=CV/CAV            (3.2) 

1, 1 1, 1s.t.  [ - + , + + ] [ - + , + + ]=ij gap i ij gap i i j gap i i j gap it t t t t t t t   − − − −   

maxs.t.  iv v  

where 
arr

it  is the arrival time for vehicle i to reach conflict point j, gapt  is the time gap for 

safety consideration (including gap for HDV, CV, and CAV, marked as _gap HDVt , _gap CVt , 

_gap CAVt ), 𝛼 is the term of a random variable to simulate the stop-sign stop time for HDV 

that follows (1,1)N , and  
iv  is the speed of vehicle i at the current CDS calculation step, 

max 55v =  kph is the maximum driving speed. The term [ - + , + + ]ij gap i ij gap it t t t   refers to 

the time interval of the estimated arrival time to a conflict of the vehicle, marked as arrival 

time interval (ATI). In this research, _gap HDVt , _gap CVt , _gap CAVt  are set to 2 s, 1.5 s, and 1.5 

s respectively. The time gaps of HDV are larger than CV/CAV, because HDV is not driving 

under CDS instruction, therefore the arrival time for HDV is harder to estimate and needs 

a larger gap to cancel HDV drivers’ driving randomness. 

The key element of arranging a vehicle passing schedule is to precisely estimate the 

arrival time. Considering the differences in the driving behaviors between HDV, CV and 

CAV, we use different methods to estimate their arrival time. For HDV, we use a three-

stage calculation: constant speed stage, deceleration stage, and acceleration stage. The 

three stages refer to the state of (1) driving at approximately constant speed before arriving 

at the intersection; (2) about to reach the intersection, the vehicle starts to decelerate and 

prepare to stop; (3) accelerating after stopping at the stop sign. The acceleration and 

deceleration process are treated as uniform acceleration/deceleration motion, which is the 

default by SUMO and provides good simulation results. Therefore, the arrival time of HDV 

can be calculated by: 
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arr

con dec acct t t t= + +   (3.3) 

( ) /con dect d d v= −    (3.4) 

/dec dect v veh=    (3.5) 

2 /acc acc acct d veh=    (3.6) 

2 / (2 )dec decd v veh=                      (3.7) 

where  
cont , 

dect , 
acct  are the arrival time for the three stages respectively, d is the vehicle’s 

distance to the start point of the intersection, 
decd  is the deceleration distance,  

accd is the 

acceleration distance (which is the same as the distance from the start point of the 

intersection to the conflict point), 
decveh  and 

accveh  are the vehicles’ average deceleration 

and acceleration value (trajectory calibrated). For HDV, 
decveh =1.88 m/s2 , and 

accveh

=1.46 m/s2 (Table 3.1). 

The CV and CAV do not have to stop at the intersection, if traffic state at the 

intersection allowed, thus it is easier to calculate their arrival time: 

( ) /arr

acct d d v= +                       (3.8) 

where d and 
accd  are the distance to the intersection and the distance between the start 

of the intersection and conflict point. If the vehicle is expected to make a turn at the 

intersection, then it has to decelerate to the maximum allowed speed for turning 36turnv =  

kph to make the corner. The time duration of the deceleration and acceleration process 

can be calculated in the same ways as calculating HDV’s. 

There are totally 6 conflict points in the objective intersection, as shown in Fig. 3.8. For 

each vehicle, the arrival times at conflict points that it may encounter are calculated. 
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Figure 3.8 Conflict points 

Once the arrival times for all vehicles are estimated, the cooperation process begins. 

The basic idea of the cooperation is: the vehicles change their speed to adjust their arrival 

time so that overlaps between consecutive arrival time intervals (ATI) are canceled. Only 

CV and CAV can achieve V2V/V2I communication, thus HDV will not participate in the 

cooperation process and will not adjust its speed. It is easy to presume that the original 

arrival time without CDS optimization is not the best and sometimes may even lead to 

potential conflicts if vehicles keep driving at current speed. Hence, the schedule needs to 

be optimized and the driving speed needs to be adjusted for both CV and CAV. For each 

conflict point, the arrival times of all vehicles that encounter the conflict point are sorted 

by descending order. Vehicles with smaller arrival times have the priority of passing first. 

If there is no overlap between the arrival time intervals (ATI) of two consecutively arriving 

vehicles, then the second vehicle does not have to yield to the first vehicle, and the pass 

schedule needs no change. However, if overlap is found, the second vehicle must 

decelerate to arrive later compared to the original pass schedule. The mathematical 

expression of the control mechanism is shown as follow: 

max( )  ,arr arr add

i ij ij veh CPt t t i n j n= −      (3.9) 
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1, 1

    if   2

2       else

arr arr arr

ij ij i j gap i iarr

ij arr

i j gap i i
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t t

 

 

− −

− −

  + + −
= 

+ + −

             (3.10) 

where 
arr

ijt , gapt ,   are the same as previously mentioned, and 
add

ijt  is the estimated time 

that the vehicle spends on 
accd  (the gap between intersection start point and conflict point 

j). The time estimation method is the same as shown in formula 10. 

For a single vehicle, the optimized arrival time for the vehicle is the maximum arrival 

time among all the conflict points. Also, there are two situations that the CDS will stop 

providing messages to CV drivers: (1) If the CV is following a slow-driving HDV in the 

same lane inside the control zone as overtake is not allowed in the control zone; (2) 

although the estimated arrival time for HDV is larger than the CVs’ at the common conflict 

point, the HDV arrived first at the intersection and stopped at the stop sign. In these cases, 

the CV is expected to be affected by and interact with HDV, and giving CDS instruction is 

inappropriate. 

It should be noted that only CV and CAV can adjust their arrival time. The arrival time 

for HDV is fixed based on the estimation because they cannot receive CDS messages 

and follow the driving instructions. For CV, the CDS messages are given to the drivers 

with the suggested arrival time and driving speed. CAV’s motion will be controlled directly 

by the CDS, including speed, acceleration, and path. The CAV speed planning uses a 

simple method: For each CDS execution step, the algorithm judges whether its current 

speed is equal to the desired speed. If not, the CAV accelerates or decelerates to 

approach the desired speed with a constant acceleration or deceleration value. For 

CV/CAV, 𝑣𝑒ℎ𝑎𝑐𝑐 and 𝑣𝑒ℎ𝑑𝑒𝑐 are set to 2 m/s2 and 4 m/s2, respectively. The parameters 

used for the CDS are shown in Table 3.2. 
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Table 3.2 Parameters of the CDS 

Parameter Description Value 

𝑣𝑚𝑎𝑥 Maximum allowed speed for CV and CAV 55 kph 

𝑣𝑡𝑢𝑟𝑛 Maximum turning speed for CV and CAV 36 kph 

𝑣𝑒ℎ𝑎𝑐𝑐 (HDV) Vehicle acceleration for HDV 1.46 m/s2 

𝑣𝑒ℎ𝑑𝑒𝑐 (HDV) Vehicle deceleration for HDV 1.88 m/s2 

𝑣𝑒ℎ𝑎𝑐𝑐 (CV/CAV) Vehicle acceleration for CV/CAV 2 m/s2 

𝑣𝑒ℎ𝑑𝑒𝑐 (CV/CAV) Vehicle deceleration for CV/CAV 4 m/s2 

𝑡𝑔𝑎𝑝 (HDV) Safe time gap for HDV 2 s 

𝑡𝑔𝑎𝑝 (CV/CAV) Safe time gap for CV/CAV 1.5 s 

α Random stop time of the HDV N (1,1) 

 

3.2.2 Task 2 

The CDS introduced in task 1 is proposed to save driving travel time and improve 

traffic throughput efficiency, which makes the drivers drive at maximum speed without 

causing a conflict. It may request the drivers to accelerate to a much higher speed once 

entering the CDS control zone. However, whether the drivers can properly follow the 

CDS suggested speed is in doubt. In order to alleviate the driving load of fast 

acceleration, an automatic speed adaptive CDS is proposed based on the algorithm in 

task 1. 

Different to efficiency oriented CDS in task 1 which maximize vehicle speed, the 

automatic speed adaptive CDS aims at cooperating vehicles to drive pass the non-

signalized intersection by making the least speed adjustment without causing any 

conflict. The algorithm takes the current speed and distance to the intersection of all 

vehicles in the control zone as input, and outputs the closet speed to current speed that 

can avoid conflict with oncoming vehicles. Hence, the drivers can drive pass the 

intersection safely with the minimum speed adjustment. It significantly reduces the 

driving load of acceleration or deceleration and simplifies the task of following the CDS 
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speed guidance. The optimization objective of the automatic speed adaptive CDS is 

expressed as: 

1 1

min ( ) ( ),
n n

current optimal

i i i

i i

T v v v i CV
= =

 =  = −    (3.11) 

where ∆𝑣 is the speed difference of vehicle 𝑖, which is the absolute value of current 

speed minus the optimal speed. ∆𝑇 is the sum of speed difference for all CV vehicles, 𝑛 

is the total number of CV vehicles, and CV is the set of all connected vehicles. 

At each timestep, the algorithm executes once and calculates the optimal speed for 

all the vehicles in the control zone. To prevent generating an extreme speed difference 

for the controlled vehicles and ensure driving safety, vehicle dynamic constraints and 

safety constraints are implemented as show in below. 

max ,current optimal

i iv v v i CV−      (3.12) 

min , ; ,i jt t t i j i j V−       (3.13) 

max max ,idec a acc i CV     (3.14) 

where 𝑡𝑖 is the expected time that vehicle 𝑖 arrives at the CDS control line (30 meters 

ahead of the intersection stop line),  maxdec and maxacc is the maximum deceleration and 

acceleration ability of the vehicle, maxv is the maximum speed change,  mint is the 

minimum safety gap, and V is the set of all vehicles in the control zone including CV and 

HDV. maxv is 5 m/s and mint is 3 seconds. maxdec and maxacc is set to 4.5 𝑚/𝑠2 and 2.6 

𝑚/𝑠2 respectively, which align with the Sumo default settings. The estimation of 𝑡𝑖 is 

based on vehicle’s current speed and position, and the calculation method is the same 

as in section 3.2.1. The reason for choosing 30 meters ahead of intersection stop line as 

the control line is that at this position most of the vehicles start to decelerate based on 
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the drone video, which means the drivers finished cruising or car following period and 

therefore do not need speed guidance. 

 The first constraint limits the speed adjustment range by preventing the optimal 

speed greater or smaller than 5 m/s compared with current speed. The second 

constraint ensure driving safety by ensuring the arrival time at the control line for any two 

vehicles greater than 3 seconds, which shares the same idea of avoiding a conflict with 

a post encroachment time (PET) greater 3 seconds. The last constraint corresponds to 

the vehicle’s acceleration and deceleration ability. Sequential Least Squares 

Programming (SLSQP) algorithm is used to find the optimal solution, and the calculation 

is done by using the Python Scipy library.  

3.2.3 Task 3 

 The goal of task 3 is to train a decision-making model for CAVs to drive cooperatively 

so that freeway exiting vehicles can diverge to the off-ramp successfully and cause 

minimum turbulence to the traffic flow. To achieve this goal, a multi-agent reinforcement 

learning approach is introduced in this section. 

For a conventional reinforcement learning setting, at each timestep 𝑡, the agent 

observes the state 𝑠𝑡, and selects an action 𝑎𝑡. Then the environment advances to the 

next state 𝑠𝑡+1, and the agent receives a reward 𝑟 from the environment. The goal is to 

learn an optimal policy 𝜋∗ that helps the agent to make the best decision based on the 

current state, which maximizes the accumulated reward 𝑅𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘
𝑇
𝑘=0 . 𝑟𝑡+𝑘 is the 

reward at timestep 𝑡 + 𝑘 and 𝛾 ∈ (0, 1] is the discount factor, which quantifies the 

importance of future rewards. 

The state-action value function (also called Q-function) under policy 𝜋∗, denoted by 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) is the expected return at state 𝑠𝑡 with action 𝑎𝑡 given that making decision 
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following policy 𝜋∗ afterwards. The optimal Q-function can be characterized by the 

Bellman equation: 

1

0

( , ) [ ( , , ) , ]t

t t t t t t t

t

Q s a E r s a s s s a t  +



= = =   (3.15) 

The state value function (expressed as 𝑉∗) is the expected return at state 𝑠𝑡 

considering all available actions at the current step and then follow the optimal policy 𝜋∗. 

The state value function is calculated by: 

1

0

( ) [ ( , , ) ]t

t t t t t

t

V s E r s a s s s  +



= =   (3.16) 

The action space 𝐴𝑖 of agent 𝑖 is defined as the set of five high-level control 

decisions: (1) change lane to the left, (2) change lane to the right, (3) add left side virtual 

leader, (4) add right side virtual leader, (5) no action. The action of adding a left or right-

side virtual leader is designed to assist the leader in the adjacent lane to change lanes in 

the condition that gap between the left or right-side leader and the ego vehicle is not 

sufficient. Once the action is taken by an agent, it will regard the left or right leader as its 

actual leader and change its speed according to the car following model. For instance, 

as shown in Figure 3.9, vehicle 2 cannot change lanes to the right because of an 

insufficient gap to the right follower. By adding vehicle 2 as the virtual leader, vehicle 1 

will back off and secure a safe gap to the virtual leader. The overall action space of the 

system is the joint actions from 𝑛 vehicles are 𝐴 = 𝐴1 ×𝐴2 × · · · ×𝐴𝑛. 
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Figure 3.9 Adding a virtual leader 

The state of agent 𝑖, 𝑠𝑖, is defined as a matrix of dimension 𝑁 × 𝑊, where 𝑁 is the 

number of vehicles being controlled and 𝑊 is the number of features used to represent 

the state of a vehicle. For each agent, the state consists of two parts: the features of the 

ego vehicle and the features of the closet neighbors. For ego states 𝑆𝑒𝑔𝑜, a set of 

features are selected as shown below. 

{ , , , }egoS isDiverge l d v=   (3.17) 

where 𝑖𝑠𝐷𝑖𝑣𝑒𝑟𝑔𝑒 indicates whether the ego vehicle is diverging to the off-ramp or not, 𝑙 

is the lane id that starts from the rightmost lane as 0, 𝑑 is the remaining distance to the 

diverging point of the ramp, and 𝑣 is the current speed of the ego vehicle. 

An agent’s neighbor state includes the relative speed and relative position of the 

closet leaders and followers in the current lane or adjacent lanes, which is expressed by: 

{ , }, ;

{ , , , , , }

neighbor i iS isPresent t i V

V leader follower left leader left follower right leader right follower

= 


 (3.18) 

where 𝑖𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡 represents if the current or adjacent leader or follower exits, 1 is exits 

and 0 is not exits; 𝑡𝑖 is the time headway of the current or adjacent leader or follower. 

The state of an agent is the union of its ego state and neighbor state, 𝑆𝑎𝑔𝑒𝑛𝑡 = 𝑆𝑒𝑔𝑜 ∪

𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. 

The reward function is crucial to train the agents so that it follows desired behaviors. 

The total reward at each step consists of three components: speed difference reward 

𝑟∆𝑣, time headway rewards 𝑟ℎ𝑒𝑎𝑑𝑤𝑎𝑦, and diverging reward 𝑟𝑑𝑖𝑣𝑒𝑟𝑔𝑒. The speed difference 

reward is designed to reflect the traffic turbulence by comparing the agent’s actual speed 

and desired speed. For each agent, its desired speed is assigned to a fixed value with 

random noise added and the desired speed does not change during each episode. 𝑟∆𝑣 is 

expressed as: 
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𝑟∆𝑣 = |𝑣 − 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑|                   (3.19) 

where v is the current speed and 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired speed of the agent. The time 

headway reward penalizes a car-following behavior with a small time headway to the 

leader, and it prevents aggressive lane changing behavior cut into an insufficient gap. 

The calculation of 𝑟ℎ𝑒𝑎𝑑𝑤𝑎𝑦 is expressed as: 

log( )i
headway

base

t
r

t
=   (3.20) 

where 𝑡ℎ𝑒𝑎𝑑𝑤𝑎𝑦 is the current time headway to its leading vehicle. 𝑟ℎ𝑒𝑎𝑑𝑤𝑎𝑦is set to 0 if 

there is no leading vehicle. 𝑡𝑏𝑎𝑠𝑒 refers to the desired time headway, which indicates the 

minimum time headway to keep safety following maneuver. The value of  𝑡𝑏𝑎𝑠𝑒 is set to 

1.2 second that align with Sumo default.  

Furthermore, if the diverging vehicle is traveling on the rightmost lane, a reward will 

be given as expressed below: 

𝑟𝑑𝑖𝑣𝑒𝑟𝑔𝑒 = 𝑤 (
𝑑−𝐿

𝐿
)

2
                   (3.21) 

Where 𝑑 is the remaining distance to the diverging point, 𝐿=500 m is the upstream 

length of the diverging point, and 𝑤=10 is the coefficient. 

 The total reward of agent 𝑖 𝑅 at time step 𝑡 is the sum of the three types of rewards 

as follows: 

, 1 2 3i t t headway diverger w r w r w r= + +   (3.22) 

where 𝑤𝑖, 𝑖 ∈ {1,2,3} are the weights of the rewards. The global reward 𝑅 at time step 𝑡 is 

expressed as the average reward among all the vehicles in the environment, which can 

be expressed by: 

,

1

1 n

t i t

i

R r
n =

=    (3.23) 

where 𝑛 is the number of the vehicles. 
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 In this research, the cooperative setting is adopted for the multi-agent reinforcement 

learning problem that the agents collaborate to optimize a common long-term return. All 

the agents share the same reward function and Q-function, which enables the single 

agent RL to be applied, if all agents are coordinated as one decision maker. Deep Q 

Network (DQN) is adopted as the training algorithm, where the actor network and critic 

network are approximated by two neural networks with the same structure and 

parameters. The neural network uses three fully connected layers with 128 neurons, 

taking the global state as input and outputs state-value function. For the actor network, 

the state-value function pass through the Softmax activator and generates the probability 

of taking each action.  

 To prevent choosing invalid actions, action masking is applied. There are two types 

of actions that are considered invalid: unsafe lane change and secondary lane change. 

An unsafe lane change is defined as a vehicle taking the action of lane change when it 

still overlaps in the longitudinal direction with vehicles in the adjacent lane. Secondary 

lane change masking prevents an agent from choosing the action of lane change when 

the vehicle is currently conducting a lane change maneuver. The action masking works 

by setting the Softmax output probability of the invalid action to 0 and thus the agent can 

only choose the actions from the available action list. Afterwards, the vehicle that is 

closer to the off-ramp is considered with higher priority, and it takes an action and 

executes first and then advances to the next agent with less priority.  

3.3 HMI Design 

The speed guidance generated by the CDS algorithm is to be broadcasted to the CV 

drivers, and the drivers adjust their driving speed accordingly. In a sophisticated driving 

environment where CV and HDV are mixed, there are great chances that unexpected 

behavior of HDV occurs, which could bring significant turbulence to the traffic and impact 
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the optimal speed calculated by the CDS. In such a case, the recommended speed 

broadcast to the driver may fluctuate over time, and it cause troubles for the CV drivers 

to follow the suggested speed. Hence, appropriate in-vehicle HMI should be designed 

that do not only provide CV drivers clear information but also cause minimum cognitive 

difficulty of obtaining the information to enhance their performance. 

In order to achieve this goal, three types of in-vehicle HMI are designed for the CDS 

algorithm in section 3.2.1, which are (1) ∆𝑣 interface; (2) ∆𝑡 interface; and (3) ∆𝑣 graphic 

interface. ∆𝑣 is the difference between the vehicle’s optimal speed and CDS current 

speed while ∆𝑡 is the difference between the estimated arrival time to the CDS control 

line and the optimal arrival time that is shown below:  

d d
t

v v v
 = −

+
                  (3.24) 

where 𝑑 is the distance to the CDS control line and 𝑣 is the vehicle’s current speed. A 

negative ∆𝑣 indicates the driver needs to slow down while a negative ∆𝑡 represents a 

speed up command.  

 The ∆𝑣 or ∆𝑡 display method is designed to deliver the exact value of the time or 

speed difference calculated by the CDS with a brief literal explanation. The ∆𝑣 or ∆𝑡 

value will be displayed on the vehicle’s head-up display system (HUD), with the font 

color of red indicating slow down and green representing speed up. The value of ∆𝑣 and 

∆𝑡 is rounded to prevent fractions to be displayed which brings extra reading load. For 

∆𝑣 display, the driver speed guidance display is shown below: 

• “Speed up ∆𝑣 mph”: when ∆𝑣>0 and the driver need to speed up; 

• “Slow down |∆𝑣| mph”: when ∆𝑣<0 and the driver need to slow down; 

• “Keep speed”: when ∆𝑣=0 and no need to change speed; 

• No display: when the CDS failed to find an optimal solution in a sophisticated 

environment. 
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For ∆𝑡 display, the speed guidance display is expressed as: 

• “∆𝑡 s ahead”: when ∆𝑡 >0 and the driver need to slow down; 

• “∆𝑡 s behind”: when ∆𝑡 <0 and the driver need to speed up; 

• “Keep speed”: when ∆𝑡=0 and no need to change speed; 

• No display: when the CDS failed to find an optimal solution in a sophisticated 

environment. 

In addition to the ∆𝑣 and ∆𝑡 display method, a ∆𝑣 graphic display interface is also 

introduced. It converts the speed difference ∆𝑣 to a real-time updating graphic navigation 

panel that is displayed on the HUD. The interface consists of a vehicle icon and a 

baseline map, where multiple lines with different colors are drawn on the baseline map 

as shown in Figure 3.10. The central green line is the baseline that indicates the optimal 

state (∆𝑣=0), and the yellow lines and red lines imply the vehicle icon around these lines 

needs to adjust its speed. The space between two consecutive lines represents a speed 

difference of 1m/s, which means the top or bottom yellow lines indicates ∆𝑣 = ±5 m/s. 

The top and bottom red lines are the boundaries that the vehicle icon will never move 

beyond this region. Given that ∆𝑣 is updating step by step following the CDS, the 

position of the vehicle icon moves in a real-time manner. When ∆𝑣<0, the vehicle icon 

moves up from the center line, and the vehicle icon goes down when ∆𝑣>0. The drivers 

can obtain the key information of whether to acceleration or deceleration maneuver 

action from the guidance display, which is expected to alleviate the CV drivers’ load of 

reading the numbers. The three display methods are summarized in Table 3.3. 



 

 

30 
Investigating the Effects of Cooperative Driving for CAVs in Different Driving Scenarios Using Multi-Driver Simulator Experiments 

 

Figure 3.10  ∆𝒗 graphic display 

Table 3.3 Summary of proposed in-vehicle guidance interface 

 
Keep speed 

(∆𝒗=0) 

Speed up 

(∆𝒗 >0) 

Slow down 

(∆𝒗 <0) 

No solution for 

CDS 

∆𝒗 
   

/ 

∆𝒕 
   

/ 

∆𝒗-graphic 

   

/ 

 

4 Experiment Design  

4.1 Task 1 

To investigate the effectiveness of the CDS in a mixed traffic state, driving simulator 

and microscopic traffic simulation are designed. There are totally five layers of 

experiments, which correspond to different traffic mixture state, shown in Table 4.1. 
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Table 4.1 Experiment design 

Layer 

index 

Layer type  Experiment type Simulation 

software 

Vehicle involved 

1 100% HDV Microscopic traffic 

simulation 

SUMO HDV (SUMO generated) 

2 HDV-CV 

mixture 

Microscopic traffic 

simulation + multi-driver 

driving simulator 

SUMO + 

CARLA 

HDV (SUMO generated) 

CV (driven by participants) 

3 100% CV Multi-driver driving 

simulation 

CARLA CV (driven by participants) 

4 CV-CAV 

mixture 

Microscopic traffic 

simulation + multi-driver 

driving simulator 

SUMO+ 

CARLA 

CV (driven by participants) 

CAV (SUMO generated) 

5 100% CAV Microscopic traffic 

simulation 

SUMO CAV (SUMO generated) 

 

SUMO was used to generate HDV and CAV, while CARLA was used as the testbed 

for CV. SUMO and CARLA co-simulated layer 2 and layer 4, where HDV/CAV was 

controlled by SUMO, and CV was driven by the participants with cooperative driving 

instruction provided to them. Both SUMO and CARLA collect simulation data and generate 

output evaluation files that were used for the result analysis. 

For each SUMO simulation experiment, the scenario was simulated in the calibrated 

model. A total duration of 3600 seconds was set for a single simulation, and it was 

simulated 5 times with different random seeds. Evaluation files including vehicle trip 

information, aggregated travel time for roads, and surrogate safety measures were 

generated. 

To conduct the driving simulation experiment for task 1, we recruited 12 drivers. IRB 

approval has been obtained. The drivers were divided into 4 groups with 3 participants 

evenly distributed to each group. The simulation was done group by group. That is, 3 

drivers in the group drove in the CARLA simulator simultaneously by connecting all 3 
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drivers to the simulation server. The drivers were asked to follow pre-set paths so that 

they can drive around on the map and pass the intersection multiple times to produce 

sufficient samples. The paths of a single loop designed for each driver are demonstrated 

in Table 4.2. Also, the type of vehicle interaction of CV is shown in the table. The naming 

rule of paths is clarified in the microscopic traffic simulation sub-section in section 3.1.1, 

and also the paths are visualized in Figure 3.4. 

Table 4.2 Path arrangement 

Path index Driver 1 Driver 2 Driver 3 Expected Interaction of CV 

1 r32 r52 r14 crossing, merging 

2 r16 r14 r32 following 

3 r54 r32 r16 no interaction 

4 r36 r16 r54 merging 

5 r52 r54 r36 crossing, following 

6 r14 r36 r52 crossing 

 

As shown in Table 4.2, a single loop contains 6 different paths, which covers all the 

possible origin-destination combinations for a 3-way intersection. The drivers may 

encounter different types of interactions with another driver, including crossing, merging 

and vehicle following. For a single experiment, the 3 drivers in the group will complete 3 

loops of paths. Hence, for each experiment layer, there are 4 groups with 3 drivers who 

will complete 3 loops of driving that contain 6 paths. Theoretically, 4*3*3*6=216 vehicle 

passing intersection events will be collected for each layer. All three layers with driving 

simulation (layers 2,3,4) have the same abovementioned experiment design, but are 

different in the traffic mixture state (HDV, CV, CAV shown in Table 4.1). 

4.2 Task 2 

To test the effects of different in-vehicle guidance interface, another set of driving 

simulator experiments are designed. The experiments share the same simulation 
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environment as in task 1 with identical driver and vehicle model settings in Sumo and 

Carla, but are different in experiment design. 

 The experiment is a within-subjects experiment. Each scenario has three types of 

interface design; each participant driver experienced all designs in all scenarios in a 

randomized order. The advantage of a within-subjects experiment is that it controls 

extraneous participant variables and makes it easier to detect the relationships between 

the independent and dependent variables. There are two layers of experiments in total: 

mixed traffic environment and CV-only environment, which corresponds to the second 

and third layer in Table 4.1.  

In the mixed traffic layer, when the CV enters the CDS control zone, a HDV will be 

spawned simultaneously at the other two approaches of the intersection, as shown in 

Figure 4.1. The HDVs are spawned with the same initial speed as the CV’s speed, and 

the spawn point is located at the CDS control boundary (150 meters from the 

intersection stop line) with a random integer ranging from [-8,8] meters. Hence, the 

distance to the intersection is in the range of [142, 158] meters when the HDVs are 

spawned. With the same initial speed as the CV, the HDVs are expected to arrive at the 

intersection around the same time as the CV if the CV maintains its speed. However, the 

CDS will broadcast the suggested speed to the CV drivers and guide them to avoid 

conflict with HDV. The effects of the different speed guidance interfaces will be explored 

in the experiments. 

There are 20 participants recruited in total for this experiment, among which 7 are 

females and 13 are males with an average age of 31.1 years old and average driving 

experience of 9.2 years. Each participant held a valid driving license. Upon arriving at 

the driving simulator lab, each participant completed both a consent form and a 

demographic survey. Afterwards, they were instructed about the possible speed 

guidance interface designs they might meet during the experiment. Before the formal 
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experiment, each participant was given a practice drive to get used to the simulator and 

the different interfaces. In the formal experiment, each participant completed the task of 

driving with 3 types of CDS speed guidance, and within each guidance type, the 

participants drove through the intersection 12 times.  

 

Figure 4.1 Mixed traffic environment 

 

4.3 Task 3 

To train and test the MARL algorithm for off-ramp cooperative driving, a simulation 

environment based on Sumo is developed. An off-ramp road network is built in Sumo as 

shown in Figure 4.2. The total length of the road network is 1 km, where the diverging 

point of the off-ramp is at the center of the road network, and the downstream and 

upstream are both 500 m. The main line has 2 lanes and the off-ramp has a single lane. 

A vehicle group of 6 vehicles is simulated, among which 2 are diverging vehicles (the 

first 2 vehicles on the inner lane) and the rest are through vehicles, as shown in Figure 

4.2. The spawn points of the vehicles are shown in Figure 4.3. Spawn point 1 and 4 are 

at the start of the road network, spawn point 2 and 5 are 20 m away in downstream, and 
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spawn points 3 and 6 are 40 m away from spawn point 1 and 4. Diverging vehicles (red 

vehicles) are spawned at spawned point 2 and 3, and the rest (white vehicles for HDVs) 

are through vehicles. When the simulation is initialized, 6 vehicles are spawned 

simultaneously at the position of ∆𝑡 m to the spawn point where ∆𝑡 is a random integer 

ranging from -5 to 5. Each vehicle is given a desired speed following a normal 

distribution that 𝑁~(24, 2.4) in m/s. The vehicle following behavior is controlled by the 

ACC model embedded in Sumo, and lane change maneuver is executed using the lane 

change command in Sumo through TraCI portal. 

 

Figure 4.2 Off-ramp simulation model in Sumo 

 

Figure 4.3 Vehicle spawn point 

The model is trained for 10,000 episodes, with a discount factor 𝛾=0.99 and learning rate 

𝜂=𝑒−4. The coefficient 𝑤1,𝑤2, and 𝑤3 for the reward function are all set to 1. In each 

episode, the simulation ends when all the vehicles have passed the off-ramp (distance to 

ramp 𝑑𝑖<0, 𝑖 ∈ 𝑉) or a collision happens. Only the vehicle in the control zone (0<𝑑𝑖<500) 

will be coordinated by the algorithm, vehicles passed or diverged the off-ramp maintains 
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their driving pattern. The simulation is performed in a Windows 10 Desktop with a 2080 

super graphic card and 64G RAM. 

5 Experiment Results and Discussion  

5.1 Task 1 

Five layers of traffic simulation and driving simulator experiments are conducted and 

the vehicle data and driving behavior data are collected. In order to understand the 

effectiveness of CDS in terms of traffic throughput efficiency and safety, multiple 

measurements are used including travel time, average speed, throttle usage, and 

surrogate safety measures. The results are demonstrated in Figures 5.1 to Figure 5.7, and 

Tables 5.1 to 5.3. The measure “travel time” is the time vehicle spends from entering the 

control zone to entering the intersection. The interval for average speed, throttle usage, 

and jerk calculation (deviation of acceleration) is also from the boundary of the control 

zone to the entering point of intersection. It has to be mentioned, in Table 5.1 and Table 

5.2, the travel time for 100% HDV and 100% CAV layer refer to the travel time of HDV and 

CAV, respectively, while in other layers it refers to the travel time of CV. 

The market penetration rate (MPR) of CV is expected to affect the performance of 

CDS, thus for a mixture traffic scenario, the CV MPR is divided into 4 intervals [0-25%], 

[25-50%], [50-75%], and [75-100%] to explore its influence on traffic efficiency and driving 

comfort. The calculation of CV MPR is the number of CV divided by the number of all the 

vehicles inside the control zone. In addition, in a CV-HDV mixture environment, CV may 

encounter congestion when approaching the intersection. Congestion, in this research, 

refers to two situations: (1) HDV is stopping at the stop sign when CV approaches the 

intersection in a different entrance; (2) slow-driving HDV is leading the CV at the same 

lane, and the CV is not allowed to pass the leading HDV inside the control zone. According 
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to observation, these two situations affect the drivers’ perception and judgment and slow 

down the CV. Hence, travel time and average speed in congested and non-congested 

scenarios are calculated and presented for HDV-CV mixture layer. 

Table 5.1 Travel time summary (vehicle type specified) 

Layer CV MPR % Mean 

(s) 

Min (s) Max (s) Std count t value 

100 % HDV (baseline) 41.4 16 64 6.14 606  

CV-HDV 

(CV MPR %) 

0-25 35.3 10.3 72.6 21.82 20 3.75  

(vs 100 % HDV) 

25-50 30.3 8.5 67.5 16.94 100 1.14 

(vs 0-25 % MPR) 

50-75 20.9 7.5 29.2 12.49 52 3.53 

(vs 25-50 % 

MPR) 

75-100 13.5 10.4 18.6 2.71 14 2.19 

(vs 50-75 % 

MPR) 

100 % CV 12.1 7.3 23.4 2.70 179 1.86 

(vs 75-100 % 

MPR) 

CV-CAV 

(CV MPR %) 

0-25 15.3 10.3 21.3 3.00 12  

 

25-50 16.9 7.3 28.5 5.52 70 0.97 

(vs 0-25 % MPR) 

50-75 14.6 8.6 27.0 3.84 83 3.02 

(vs 20-50 % 

MPR) 

75-100 14.1 8.0 20.1 3.41 35 0.67 

(vs 50-75 % 

MPR) 

100 % CAV 10.9 9.6 12.8 0.59 609 10.2 

(vs 100% CV) 

 



 

 

38 
Investigating the Effects of Cooperative Driving for CAVs in Different Driving Scenarios Using Multi-Driver Simulator Experiments 

 

Figure 5.1 Travel time (average travel time for mixed traffic) 

Table 5.2 Average speed summary 

Layer CV MPR % Mean (kph) Min (kph) Max (kph) Std  count 

100 % HDV (baseline) 13.1 8.4 33.8 2.62 606 

CV-HDV 

(CV MPR %) 

0-25 15.3 7.4 56.4 9.84 20 

25-50 17.8 8.0 63.5 8.52 100 

50-75 25.8 9.1 72 6.84 52 

75-100 40 29 51.9 6.41 14 

100 % CV 44.6 23 73.9 4.00 179 

CV-CAV 

(CV MPR %) 

0-25 35.3 25.3 52.4 4.24 12 

25-50 32 18.9 73.9 5.69 70 

50-75 36.9 20 62.8 4.30 83 

75-100 38.3 26.8 77.1 4.68 35 

100 % CAV 49.5 42.1 56.5 1.23 609 
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Figure 5.2 Travel time and average speed in congested/uncongested state 

 

 

Figure 5.3 Average throttle usage 

5.1.1 Efficiency 

The travel time is the direct indicator of traffic efficiency. As Table 5.1 demonstrates, 

compared with the base layer (100% HDV), the travel times of the layers applied CDS 

have all decreased to a certain extent. For CV-HDV mixture layer, the travel time saving 
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of CV increases as the MPR increases, and the increases from lower MPR interval to 

higher MPR interval are all significant (p<0.05) except for MPR from [0-25%] to [25-50%]. 

This shows that MPR of CV has a great positive impact on the traffic efficiency in a CV-

HDV mixed traffic. This is because in a relatively low CV MPR driving environment, CV 

are more likely to be held by the HDV, either being blocked by the HDV in front or need to 

yield to HDV at the intersection, which is the state of the previously mentioned term 

“congestion”. As Figure. 5.2 shows, when CV that runs into congestion averagely spends 

192% more travel time (13.6 to 39.8), which validates the abovementioned finding. Once 

the CV MPR increase to 75-100%, the travel has seen a dramatic decrease to 13.5 s, 

which is about the same level as the CV-CAV mixture scenario. Also, the travel time of 

100% CV layer (layer 3) is smaller than layer 2 and layer 4. We presume the reason for it 

is there are only 3 CVs that are driven by the participants in the experiment, and unlike 

layer 2 and layer 4, they are not affected by the surrounding traffic (HDV or CAV), and 

they may be prone to drive faster and gain a smaller travel time. As expected, the 

efficiency of the 100% CAV scenario is the best, for CAVs’ average travel time (10.9) is 

significantly smaller than all other layers (t=10.2, d.f.>1000, vs 100% CV).  

Figure. 5.1 shows the reduction in travel time in terms of traffic flow perspective after 

apply CDS. In alignment with previous findings, in a low CV MPR rate when mixed with 

HDV, the efficiency improvement is negligible, for only 3.9% of travel time saving is gained. 

However, when the CV MPR is sufficient or in a CV-CAV mixed traffic, 60-70% of saving 

in travel time can be acquired. Furthermore, in a fully CAV scenario, up to 73.7% travel 

time saving is expected, which are on the same level of previously developed CDS in 

terms of efficiency improvement [31]. 

Similar to travel time, the average speed in the control zone also indicates traffic 

efficiency performance. Although the calibrated value for HDV speed is around 36 kph (10 

m/s), the average speed of HDV in the control zone is only 13.1 kph (Table 6.2). This is 
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because HDV have to slow down and stop at the stop sign, and it brought down the 

average speed dramatically. It should be noticed that even if the average speed is only 

15.3 kph in 0-25% CV MPR scenario, the maximum average speed still reaches 56.4 kph, 

which is much higher than the average value (the outliers in Figure. 5.2). This could be 

explained by that the CV did not encounter any traffic or the CDS still finds an optimal 

pass schedule for the CV in a congested situation, and thus the CV can drive at a high 

speed as the CDS instructed.  

In addition, to understand the speed distribution inside the control zones, we divide 

the control zone into inner zone and outer zone, as shown in Figure. 5.4. Inner zone is the 

50 m area around the intersection, while the outer zone is the remaining part of the control 

zone. The speed at inner zone for 0-25%, 25-50%, 50-75%, and 75-100% CV MPR are 

8.2 m/s, 13.6 m/s, 16.7 m/s, and 29.9 m/s with standard deviation of 24.8, 21.3, 18.2, and 

15.3 respectively. This shows that CV speed at the inner zone is very low and is distributed 

arbitrarily. On the other hand, the average speed at outer zone for the 4 MPR are 28.3 

m/s, 30.0 m/s, 37.9 m/s, 46.4 m/s, with standard deviation of 4.2, 5.1, 4.8, 5.0, respectively. 

It indicates that CV drivers are driving much faster in the outer zone than in the inner zone. 

Also, their driving in the outer zone is much steadier and thus the speed is easier to 

estimate. 
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Figure 5.4 Control zone divide 

The average throttle usage reflects how much throttle the driver is using under the 

CDS. It can be inferred from Figure. 5.2 that with a higher CV MPR, the drivers are prone 

to use more throttle, and therefore their speed should be higher. The results of throttle 

usage could be used in emission estimation in future research.  

To better understand the contributing factors for CDS performance on efficiency, a 

linear model is estimated for travel time and average speed considering 5 factors: CV 

MPR (range from 0-1), congestion (1 if yes), go straight at intersection (1 if yes), right turn 

at intersection (1 if yes), and left turn at intersection (1 if yes). The model estimation results 

are shown in Table 5.3.  

Table 5.3  Model for travel time 

 Travel time Average speed 

Variable Coefficient p value Coefficient p value 

Intercept 27.17 <0.001 30.75 <0.001 

MPR -22.77 <0.001 15.79 <0.001 

Congestion 21.56 <0.001 -21.19 <0.001 

Right turn -1.64 0.544 3.71 0.110 

Left turn -1.33 0.570 0.31 0.891 

Go straight -3.25 0.177 4.25 0.101 
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From the modeling results, it can be inferred that CV MPR and congestion have a 

significant impact on travel time and average speed for both p values are smaller than 

0.001. Also, going straight at the intersection has a positive effect on time saving and 

speed increase compared to turning at intersection, which align with common sense. 

5.1.2 Driving Comfort 

The standard deviation (std) of throttle reflects driving comfort and is also a good 

indicator of how easy it is to follow the CDS. Smaller std means the drivers are steadier 

on the throttle and can follow the CDS better. Unsurprisingly, for CV-HDV layer, lower CV 

MPR has larger throttle std as Figure. 5.5 shows. This means drivers are busy adjusting 

their throttle usage, and it shows the CDS instruction is not easy to follow. In this case, 

the driving comfort deteriorated. As MPR increases, throttle std decreases as expected, 

but still larger 100% CV layer.  

In CV-CAV layer, the throttle std is larger than 100% CV, which is not expected. 

Because CAV will adjust their speed in time to let CV drive more comfortably, and thus 

CV does not have to change the throttle frequently. However, the opposite trend is gained. 

The possible reason for this might be: when the driver is driving at the CDS suggested 

speed, no driving instruction is displayed; thus the driver relaxed and did not hold the 

throttle steadily. 
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Figure 5.5 Standard deviation of throttle usage 

To study driving comfort, jerk, which is the third derivative of vehicle of position with 

respect to time, has been widely used. Driving style with excessive jerk easily makes the 

passengers feel discomfort. For a highly comfortable ride, the maximum allowable jerk 

experienced by the passengers is suggested as 18 m/s−3 [32]. Figure. 5.6 shows the 

maximum longitudinal jerk of the vehicles inside the control zone of different layers. From 

the results, we could infer that the drivers are driving a bit aggressively, as the average 

longitudinal jerk for all scenes have exceeded 40 m/s−3, and therefore the comfort of the 

passengers deteriorated. This might relate to the way that the driving instruction is 

provided to the drivers, and it may need to optimize the instruction message and GUI 

displayed for drivers. Nevertheless, for most of the layers, there are trips with small jerks, 

as the minimum values are smaller than 20 m/s−3, and in these cases, the CDS is working 

perfectly and the drivers are closely following the instructions. It could be also noticed that 

the difference of driving comfort between 100% CV MPR and a low CV MPR (CV-HDV 

mixture) is significant (t=9.82, d.f.=189), which again shows that in a high CV MPR 

environment the CDS performs better in terms of driving comfort. 
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Figure 5.6 Maximum longitudinal jerk 

5.1.3 Traffic Safety 

Different from most previous research of intersection cooperative driving, we not only 

focused on efficiency but considered safety. The results of 3 surrogate safety measures 

(TTC, PET, DRAC) and 4 conflict types (rear-end, crossing, merging, and crash) are 

shown in Figure. 5.7. Time-to-collision (TTC) and Post-encroachment-time (PET) are 

surrogate safety measures widely used for safety analysis. DRAC, the deceleration rate 

to avoid a crash, represents the count of hard brakes. The threshold of TTC and PET is 

set to 1.5 seconds, which is the most adopted threshold. TTC or PET smaller than the 

threshold is regarded as a conflict. Also, DRAC larger than 3 m/s2  is regarded as a 

conflict. The conflict types are automatically generated and recorded by SUMO. 

First, the percentage of conflict occurrence dropped after applying the CDS, which 

indicates the CDS has safety benefits for CV and CAV. The conflicts of CV-CAV layer 

were reduced dramatically compared with the CV-HDV layer and baseline for all types of 

measurement. This shows that the implementation of CAV technology can substantially 

improve traffic safety.  Second, the most frequently occurred conflict is rear-end conflict. 
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This might due to the huge speed difference between CV and HDV near the intersection 

which leads to a small TTC. To address this issue, slow down messages should be given 

to the drivers when approaching the intersection if congestion is encountered. Conflict 

type of crossing is also observed in the experiments, but not by a large percentage, which 

means the CDS can avoid most of the crossing conflicts. Also, increase the safe time gap 

could reduce the potential crossing conflicts. The conflict type of merging conflict is rare 

in the experiment, and it proves that CDS is able to manage vehicles’ arrival time in a 

merging scene.  

 

Figure 5.7 Surrogate safety measure (SSM) summary 

5.2 Task 2 

The objective of task 2 is to design HMI for cooperative driving at non-signalized 

intersection, and evaluate HMI designs through driving simulator experiments. Multiple 

vehicle dynamic, driving comfort, and goodness-of-following-guidance indicators are 
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adopted to measure the performance of different HMIs in various CDS activation 

conditions. 

To define different CDS activation conditions, the following approaches are used. 

First, based on the driving environment with or without HDV, the traffic condition is 

divided into two types: the “mixed traffic” and the “CV environment”. Then, the value of 

∆𝑡 (the time difference between optimal and estimated time arrives at the CDS control 

line) when a CV enters the CDS control zone, denotes as ∆𝑡𝑖𝑛𝑖, is used to reflect the 

initial CDS activation state. A ∆𝑡𝑖𝑛𝑖 with greater absolute value indicates a bigger time 

difference between estimated arrival time and CDS optimal arrival time, which requires 

the CV driver to change its speed more in order to avoid conflicts. Because big ∆𝑡𝑖𝑛𝑖 

needs much speed adaptation and put more driving load on the CV drivers, it is defined 

as the “hard mode”, and condition with a small ∆𝑡𝑖𝑛𝑖 is defined as “easy mode”. In this 

research, a threshold of ∆𝑡𝑖𝑛𝑖 of 1 second is adopted to separate two conditions: CDS 

with ∆𝑡𝑖𝑛𝑖<1 s is the “easy mode” and CDS with ∆𝑡𝑖𝑛𝑖>1 s is the “hard mode”. 

Furthermore, the CDS control zone is divided into two zones based on the distance to 

the intersection: the “effective zone” and the “steady zone”. The “effective zone” is the 

area of (100,150] meters from the intersection stop line, where the vehicles entering the 

CDS control zone and complete the major task of speed changing; the “steady zone” is 

the area of (30,100] meters from the intersection stop line, where the vehicles’ main task 

is to drive steadily following the CDS guidance after speed adaptation in the “effective 

zone”. The data is grouped by the different conditions and the descriptive statistics of 

vehicles dynamic, driving comfort, and CDS effectiveness measurements are presented 

below. 
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5.2.1   Goodness-of-guidance-following 

The variable ∆𝑡 represents the time difference between the estimated and optimal arrival 

time to the intersection control line for a CV. The average absolute ∆𝑡 (denote as 

average |∆𝑡|) for a segment indicates the overall approximation of a CV’s actual speed 

profile to the optimal speed calculated by the CDS. A smaller average |∆𝑡| value 

suggests the CV driver is following the speed guidance more closely in the segment, 

which corresponds to better goodness-of-guidance-following. The boxplot of average 

|∆𝑡| at the “effective zone” and the “steady zone” under “easy mode” and “hard mode” is 

shown in Figure 5.8.  

 

Figure 5.8 Average |∆𝒕| under different conditions 

Notes: (a) average |∆𝑡| at the “effective zone” in mixed traffic; (b) average |∆𝑡| at the 

“effective zone” in CV environment; (c) average |∆𝑡| at the “steady zone” in mixed traffic; 

(d) average |∆𝑡| at the “steady zone” in CV environment. 
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In the “effective zone”, the main task for a CV is to change its speed to approximate 

the suggested optimal speed, while in the “steady zone” it is important to maintain a 

steady drive following the speed guidance. Hence, the average |∆𝑡| in the “effective 

zone” (mean=1.58) is significantly greater than average |∆𝑡| in the “steady zone” 

(mean=0.91) as expected (p<0.001). The traffic condition also affects the driver’s 

performance, as a significant difference (p<0.001) is observed between “easy mode” 

(mean=0.90) and “hard mode” (mean=1.92). Furthermore, the drivers are more 

comfortable following the guidance in a pure CV environment compared to mix traffic, for 

the mean value of the average |∆𝑡| for the two conditions are 1.07 and 1.55 respectively 

(p<0.001). 

In the mixed traffic condition, the three in-vehicle HMIs showed different 

characteristics in terms of CV drivers’ algorithm following behaviors. For “easy mode”, 

the CV drivers have less pressure to make speed changes, and their primary task is to 

react to minor changes in optimal speed and try to approximate it. At the “effective 

zone”, drivers are usually given a relatively larger speed change target, and significant 

differences of average |∆𝑡| are observed for the three HMIs (F=3.43, p=0.035). The ∆𝑣-

graphic interface performed best with a mean value of average |∆𝑡| of 1.09, then ∆𝑡 

interface with mean value of 1.37 and ∆𝑣 interface is worst with a mean value of 1.52. 

The results of average |∆𝑡| show similar trend for the “steady zone”, where significant 

differences between HMIs are captured (F=5.58, p=0.004). The mean value of the 

average |∆𝑡| for ∆𝑡 interface, ∆𝑣 interface, and ∆𝑣-graphic are 0.56,0.82,0.46, 

respectively. The results show that the ∆𝑣-graphic interface can perfectly deliver any 

minor changes in the optimal speed to the CV drivers due to its ability to convert float 

values into graphic style with great precision. The ∆𝑣 interface is not good at displaying 

these small variations and thus causes the drivers to mis operate. For “hard mode”, 
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significant differences are observed in the average |∆𝑡| values between the three 

interfaces for both the “effective zone” (F=4.03, p=0.034) and the “steady zone” (F=5.85, 

p=0.014). For both zones, the ∆𝑡 interface performed worst with a mean value of 

average |∆𝑡| of 7.18 and 4.81 respectively. The ∆𝑣 outperformed ∆𝑣-graphic interface 

unexpectedly, the potential reason for this is in “hard mode” vehicles are required to 

accelerate or decelerate much, and the ∆𝑣 provides more direct instruction of “speed up” 

or “slow down” that similar to a binary command to the drives, and it might stimulate the 

drivers to change speed instantly. 

In the CV environment where no HDV presents, the CDS does not need to cooperate 

with the unpredictable behavior of HDV and thus provides steadier speed guidance. At 

the “effective zone”, the mean values of average |∆𝑡| for ∆𝑡 interface, ∆𝑣 interface, and 

∆𝑣-graphic interface are 0.54, 0.55, and 0.62 respectively for the “easy mode”. The 

differences are not significant (F=0.246, p=0.78), indicating similar performances of the 

three different HMIs under the specific CDS activation condition. For “hard mode”, the 

three HMIs performed significantly differently (F=9.53, p<0.0001). The ∆𝑡 interface is the 

worst interface, as it does not only have the highest average |∆𝑡| value=3.63, but also 

produces multiple undesired cooperative driving events with average |∆𝑡|>10. However, 

there is no significant difference between the ∆𝑣 interface and the ∆𝑣-graphic interface 

under “hard mode” in a CV environment. At the “steady zone”, a significant performance 

difference has been observed for both “easy mode” (F=5.13, p=0.007) and “hard mode” 

(F=8.19, p=0.004). As expected, the ∆𝑡 is the interface with the highest average |∆𝑡| 

value, which shows the CV drivers are struggling to keep the desired speed suggested 

by CDS in the “steady zone”. Furthermore, the ∆𝑣 interface and the ∆𝑣-graphic interface 

show similar performance under “hard mode” (p=0.52), while the ∆𝑣-graphic interface is 

significantly better than ∆𝑣 interface under “easy mode” (p=0.002).  



 

 

51 
Investigating the Effects of Cooperative Driving for CAVs in Different Driving Scenarios Using Multi-Driver Simulator Experiments 

In general, the ∆𝑡 interface performed significantly worse than the other two HMIs in 

terms of goodness-of-guidance-following in most of the CDS activation conditions. The 

∆𝑣 interface and the ∆𝑣-graphic interface have their own strength and weakness in 

different conditions. For cooperative driving that requires much speed adaptation, the ∆𝑣 

interface is better because it presents the drivers with more direct driving command 

“speed up” or “slow down”, which is beneficial for the drivers to make instant operation. 

However, when the CDS is working in a relatively steady condition that provides drivers 

with a minor speed change request, the ∆𝑣-graphic guidance interface is more suitable, 

as it converts variations in the optimal speed into graphic information that allow the 

drivers to capture any small changes more easily. 

 To further understand the factors that influence CV drivers’ performance on following 

speed guidance and the effects of different HMIs regardless of these factors, the 

repeated measurement Analysis of Covariance (ANCOVA) model is used, which has the 

form shown below: 

( )ij i ij ijy B x x  = + + − +   (5.1) 

where 𝑦𝑖𝑗 is the 𝑗th observation under 𝑖th categorical group, 𝜇 is the grand mean, 𝑥𝑖𝑗 is 

the 𝑗th observation of the covariance of 𝑖th group, �̅� is the global mean for the 

covariance, 𝐵 is the coefficient, 𝜏𝑖 is the effect of 𝑖th categorical variable, and 𝜀𝑖𝑗 is the 

unobserved error term for the 𝑗th observation in the 𝑖th group. Three variables that affect 

the average |∆𝑡| are included in the model: approaching throttle usage (the throttle 

usage when entering the CDS control zone), the number of vehicles (number of vehicles 

in the CDS control zone), and ∆𝑡𝑖𝑛𝑖. The variables that do not satisfy the model 

assumptions are excluded. The results of the ANCOVA model for different traffic 

condition is presented in Table 5.4.  
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 Significant differences are observed between the performances of three HMIs 

whether in mixed traffic, CV environment or the overall results. The value of ∆𝑡𝑖𝑛𝑖, which 

represents the time gap between the idea arrival time and the estimated arrival time for a 

CV when entering the CDS control zone, significantly impacts the average |∆𝑡| in each 

traffic condition and CDS zones. An increase in ∆𝑡𝑖𝑛𝑖 raise the difficulties for vehicle 

cooperation, and thus results in greater average |∆𝑡|. The throttle usage also affects the 

CDS performance. If the CV drivers are using more throttle when entering the CDS 

control, the acceleration effect will be less with the same unit of throttle increase, which 

slows down the approximation to the optimal speed and increases average |∆𝑡|. In 

mixed traffic, the number of vehicles in the CDS control is another factor that influences 

the performance. With more vehicles, especially more HDVs in the control zone, it is 

harder to find a sufficient gap, which results in greater ∆𝑡𝑖𝑛𝑖 and average |∆𝑡|. 

Considering these variables have significant impact on the measurement average |∆𝑡|, 

they are set to the covariates in the model. Hence, the performance between different 

HMIs can be identified while controlling the effects of the covariates. The post-hoc 

pairwise comparison of average |∆𝑡| between three guidance interfaces is shown in 

Figure 5.9. The ∆𝑡 interface is significantly worse compared to the other two interfaces in 

the entire CDS control zone, the effective zone, and the steady zone. The difference 

between ∆𝑣 interface and ∆𝑣-graphic interface is significant in the CV environment, while 

in the mixed traffic it is not significant. Nevertheless, in the mix traffic condition, ∆𝑣-

graphic interface has lower average |∆𝑡|, value in both “effective zone” and “steady 

zone” compared to ∆𝑣 interface (mean=1.16 vs 1.51; mean=0.63 vs 0.72, respectively). 

In the CV environment, the ∆𝑣-graphic interface significantly outperformed ∆𝑣 interface 

with 0.65 vs 0.80 in the mean value of average |∆𝑡|. Furthermore, the random term of 

participants’ id is significant in the model results. It implies the heterogeneity of CV 
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drivers in the adaption to different speed guidance interfaces. Thus, in order to enhance 

the cooperative driving performance under the guidance, sufficient pre-train is 

recommended. 

 

Table 5.4 ANCOVA model statistics for different traffic condition 

 

 

  
Mixed traffic CV environment overall 

F-value p-value F-value p-value F-value p-value 

CDS 

control 

zone 

Variables  

Guidance 

interface 
28.347 <0.001 70.220 <0.001 60.783 <0.001 

Approaching 

throttle usage 
33.715 <0.001 56.030 <0.001   

∆𝑡𝑖𝑛𝑖  249.143 <0.001 792.641 <0.001 681.980 <0.001 

Number of 

vehicles 
0.528 <0.001     

Random term  

Participants ID 39.298 0.002 137.40 <0.001 97.810 <0.001 

Effective 

zone 

Variables  

Guidance 

interface 
44.653 <0.001 111.22 <0.001 102.400 <0.001 

Approaching 

throttle usage 
21.721 <0.001 29.54 <0.001   

∆𝑡𝑖𝑛𝑖  397.185 <0.001 1288.910 <0.001 1183.100 <0.001 

Number of 

vehicles 
1.772 0.185     

Random term  

Participants ID 89.097 <0.001 718.800 <0.001 439.430 <0.001 

Steady 

zone 

Variables  

Guidance 

interface 
5.939 0.003 19.340 <0.001 19.39 <0.001 

Approaching 

throttle usage 
2.180 0.142 0.941 0.333   

∆𝑡𝑖𝑛𝑖  102.308 <0.001 455.863 <0.001 457.95 <0.001 

Number of 

vehicles 
8.271 0.004     

Random term  

Participants ID 13.887 0.015     
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Figure 5.9 Post-hoc pairwise comparison of average |∆𝒕| between guidance 

interfaces 

Note: (a) mixed traffic, entire CDS control zone; (b) CV environment, entire CDS control 

zone; (c) mixed traffic, effective zone; (d) CV environment, effective zone; (e) mixed 

traffic steady zone; (f) CV environment, steady zone. 

 

5.2.2   Driving Comfort 

In the CDS control zone, the CV drivers are receiving real-time speed guidance and 

adapting their speed constantly. The speed guidance could be unstable because any 

mis operation of the drivers or the expected behaviors of the HDV in mixed traffic could 

bring turbulence to the calculation of optimal speed. When the CV drivers are trying to 

approximate the suggested speed by using throttle or brake constantly, it might make 

the passenger feal discomfort. The jerk, which is the derivative of acceleration or 

deceleration, has been widely adopted for driving comfort-related research. The max 

jerk, min jerk, and average jerk during acceleration and deceleration period in mixed 
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traffic and CV environment are plotted in Figure 5.10 and Figure 5.11, respectively. The 

acceleration period is the time period that CDS speed is greater than the current speed, 

and the drivers accelerate to approximate the optimal speed; while the deceleration 

period is when the optimal speed is smaller than the optimal speed. 

In the mix traffic scenario, the presence of HDV brought turbulence to the CDS when 

updating the real-time optimal speed for CV. Therefore, the drivers may accelerate or 

decelerate frequently to adapt to the optimal speed. For “easy mode”, no significant 

difference was observed for the jerks during acceleration or deceleration period between 

the three speed guidance interfaces. For “hard mode”, the ∆𝑣-graphic caused more 

changes in the drivers’ acceleration and deceleration behavior, where the maximum jerk 

(mean=152.49 𝑚/𝑠3), minimum jerk (mean=-185.55 𝑚/𝑠3), and average during 

acceleration period (mean=7.85 𝑚/𝑠3) are greater in absolute values compared with 

jerks of the rest two interfaces. However, only the differences of the average jerk during 

acceleration period between the interfaces are significant (p=0.031).  

The level of driving comfort in a CV environment is better compared with mixed traffic 

in terms of average jerks. During the acceleration period, the average jerk in mixed 

traffic is 7.62 𝑚/𝑠3 while in the CV environment the average jerk is only 5.71 𝑚/𝑠3 

(p=0.047). In the CV environment, the ∆𝑣-graphic interface is the most comfortable 

interface in terms of average jerk during acceleration for “hard mode”, while for “easy 

mode” the ∆𝑡 interface is best. However, there is also no significant difference between 

the results for the max jerk, min jerk, and average jerk. Hence, it can be concluded that 

the design of the proposed HMIs have no significant effect on driving comfort. 
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Figure 5.10 Driving comfort in the CDS control zone in mixed traffic 

Notes: (a) max jerk; (b) min jerk; (c) average jerk during acceleration; (d) average jerk 

during deceleration. 
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Figure 5.11 Driving comfort in the CDS control zone in CV environment 

Notes: (a) max jerk; (b) min jerk; (c) average jerk during acceleration; (d) average jerk 

during deceleration. 

5.3 Task 3 

The MADQN model was trained for 10,000 episodes on the Sumo simulator, and the 

rewards versus episodes curve was plotted in Figure 5.12. For comparison, the baseline 

model that adopts Sumo default driving behavior model and parameters was also tested 

and with the same simulation settings as it used to train the MADQN model. It was 

observed that the proposed MADQN model outperformed the baseline model by a huge 

margin in terms of rewards. During the training period, the rewards curve starts to raise 

approximately at 1000 episodes, and it was at 2500 episodes that the rewards curve 

presents less fluctuation. After 8000 episodes, the rewards curve stopped to increase 

and ends at the value between 20-30. One reason for causing the fluctuation at the end 
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of the training periods was the random effects in the initial simulation state, as the 

vehicles were spawned at random positions in the designated intervals with desired 

speed distribution of N~(1,0.1). For the baseline model, the reason for obtaining large 

negative values was the diverging vehicle fails to find a sufficient gap for diverging and 

reduce speed greatly to wait for the right lane traffic pass through, and thus was 

rewarded large negative values over time. 

 

Figure 5.12 Episodes versus rewards 

Furthermore, the trained model is applied to the decision making in the diverging 

process for additional 30 times of simulation. The performance is evaluated through 

different indicators including average travel time, successful diverge rate, and maximum 

deceleration rate, as shown in Table 5.5. The travel time is the time duration from the 

simulation starts to the time point when all six vehicles have passed the diverging point. 

The average travel time for the trained model is 21.71 seconds while for the baseline 

model the value is 26.52 seconds (p<0.001). It implies the trained decision-making 

model accelerates the diverging process by cooperating the vehicles to smoothly create 

a lane change gap rather reduce speed to form a gap at the end of the diverging area. 
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The average successful diverge rate is 0.92, which indicates 92% of the diverging 

vehicles successfully exited the freeway. The reaming 8% of the diverging vehicles failed 

to diverge mainly due to the initial state was designed with high difficulty for lane 

changing, and therefore under certain conditions the vehicles did not find a sufficient gap 

for diverging. Compared to the baseline model, the trained model generates a much 

smoother speed profile by causing less harsh breaking behaviors, as the average 

maximum deceleration during the diverging period is smaller than the baseline (1.47 vs 

3.65). Hence, it can be concluded that the trained model improves the efficiency and 

reduces harsh deceleration compared to the baseline model while ensuring a decent 

successful diverging rate. 

Table 5.5 Summary of off-ramp diverging simulation results 

Model type 
Average Travel time 

(seconds) 

Average successful 

diverge rate 

Average Maximum 

deceleration (𝒎/𝒔𝟐) 

Baseline model 26.52  1 3.65 

Trained model 21.71  0.92 1.47 

 

6 Conclusions  

The research focused on investigating the effects of cooperative driving at multiple 

driving scenarios. The study locations in this research include the non-signalized 

intersection and the freeway off-ramp. There are three tasks in the study: (1) developing 

the cooperative driving strategy (CDS) at non-signalized intersections for CAVs and CVs 

considering the mixed traffic; (2) designing the in-vehicle HMI for cooperative driving at 

non-signalized intersection; (3) proposing multi-agent reinforcement learning-based 

decision-making models for cooperative diverging at off-ramp. To test the effects of the 

proposed algorithms and HMIs, UCF SST developed multi-driver-in-the-loop co-simulation 

platform to conduct simulation experiments.  
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For task 1, the experiment results showed that the CDS reduced up to 53.8%, 66.4%, 

and 73.7% of travel time in CV-HDV, CV-CAV, and CAV environments, respectively. 

Driving speed and average throttle usage also increased significantly after applying CDS, 

which means drivers were driving faster and efficiency was enhanced. It is also found out 

that lower CV MPR and the complicated traffic state at intersection have significant 

negative impact on traffic efficiency. Furthermore, the conflicts number decreased with 

CDS embedded, especially for CAV. It shows that the proposed CDS is able to avoid 

potential conflicts and thus enhance safety.  

For task 2, the three different HMIs were test in various traffic conditions through 

driving simulator experiments. The HMI that displays the time difference between optimal 

and estimated arrival time (∆𝑡 interface), is the worst interface, as the results suggest it 

produced the largest driving error. The other two HMIs, the ∆𝑣 interface (displays the 

speed difference between the optimal speed and current speed) and ∆𝑣-graphic interface 

(converts speed difference into graphic display) performed better. In general, the ∆𝑣-

graphic interface is better than the ∆𝑣 interface, since its value of average driving error is 

significantly smaller than the value of ∆𝑣  in the CV environment. In a mixed traffic 

environment, when the traffic condition is sophisticated and requires more speed changes, 

the ∆𝑣 interface is better, while the ∆𝑣-graphic interface is more suitable for cooperative 

driving with a steadier suggested speed. In summary, although the ∆𝑣  interface can 

effectively deliver most of the guidance information to the CV drivers, the ∆𝑣-graphic 

interface works better since it can also capture and display small variations in speed 

guidance to the CV drivers.  

For task 3, a MADQN model was trained based on an off-ramp diverging scenario in 

the Sumo simulator. The model was trained 10,000 episodes and the reward curve 

showed that the MADQN model significantly outperformed the baseline model. On the 

other hand, the trained model accelerated the diverging the process by avoiding 
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mandatory lane changes at the end of the diverging areas and it also enhanced safety as 

harsh breaks at reduced while ensuring 92% of successful lane change rate in 

complicated diverging conditions.  
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